Applications = Linear least squares

Problem

Linear least squares.
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In a least-squares, or linear regression, problem, we have measurements X € R™*"
and y € R™ and seek a vector # € R"™ such that X0 is close to ;: Closeness is defined
as the sum of the squared differences: \-\ﬂ. NO%U'\ <
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For example, we might have a dataset of m users, each represented by n feature A X

Each row :t:lT of X is the features for user z, while the corresponding entry y, of y is the
measurement we want to predict from azT such as ad spending. The pl’edICtl(i_n IS glve&lmﬂ_l
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We find the optimal € by solving the optimization problem / 2
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Let 8* denote the optimal 8. The quantity »r = X6* — y is known as the residual. If 0
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Note, that the function needn’t be linear ih the argument x but only in the parameters 0

that are to be determined in the best fit. ‘/Xe 2 \ ( - X".‘g
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Linear least squares. 65 =0.992,6, =2.09
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Approaches

Moore—Penrose inverse

If the matrix X is relatively small, we can write down and calculate exact solution:
0 = (X"X)"'X 'y =Xy,

where X T is called pseudo-inverse matrix. However, this approach squares the
condition number of the problem, which could be an obstacle in case of ill-conditioned
huge scale problem.

QR decomposition

For any matrix X € R™*" there is exists QR decomposition:
X = Q : R7

where () is an orthogonal matrix (its columns are orthogonal unit vectors meaning
Q'Q = QQ'" = I and R is an upper triangular matrix. It is important to notice, that
since Q! =Q"', we have:



QROA=y — RI=Q'y
Now, process of finding theta consists of two steps:

Find the QR decomposition of X.

Solve triangular system RO = QTy, which is triangular and, therefore, easy to
solve.

Cholesky decomposition

For any positive definite matrix A € R™*" there is exists Cholesky decomposition:
X'X=A=L".L,
where L is an lower triangular matrix. We have:
L'I=y — Lizy=uy
Now, process of finding theta consists of two steps:

Find the Cholesky decomposition of X " X.
Find the zg = L6 by solving triangular system LT zg = y
Find the 6 by solving triangular system L0 = z,

Note, that in this case the error stil proportional to the squared condition number.

Random square linear system
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Applications =~ Minimum volume ellipsoid

Problem

Let z1,...,x, be the points in R2. Given these points we need to find an ellipsoid, that
contains all points with the minimum volume (in 2d case volume of an ellipsoin is just
the square).

An invertible linear transformation applied to a unit sphere produces an ellipsoid with
the square, that is det A~! times bigger, than the unit sphere square, that's why we
parametrize the interior of ellipsoid in the following way:

S={zxcR®|u=Az+b,|ul; <1}

Sadly, the determinant is the function, which is relatively hard to minimize explicitly.
However, the function logdet A~! = — log det A is actually convex, which provides a
great opportunity to work with it. As soon as we need to cover all the points with
ellipsoid of minimum volume, we pose an optimization problem on the convex function
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with convex restrictions:
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Applications = Neural network Lipschitz constant

Lipschitz constant of a convolutional layer
In neural network

It was observed, that small perturbation in Neural Network input could lead to
significant errors, i.e. misclassifications.
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Applications =~ Two way partitioning problem \?"w “w E“ ( l\i.“
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Suppose, we have a set of n objects, which are needed to be splitted into two groups.
Moreover, we have information about the preferences of all possible pairs of objects to
be in the same group. this information could be presented in the matrix form:

W e R™ ™, where {w;; } is the cost of having i-th and j-th object in the same
partitions. It is easy to see, that the total number of partitions is finite and egauls to 2™.
So this problem can in principle be solved by simply checking the objective value of
each feasible point. Since the number of feasible points grows exponentially, however,
this is possible only for small problems (say, with n < 30). In general (and for n larger
than, say, 50) the problem is very difficult to solve.

For example, bruteforce solution on MacBook Air with M1 processor without any explicit
parallelization will take more, than a universe lifetime for n = 62.



Average time for brutforce solution. 3 runs per n
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Despite the hardness of the problems, there are several ways to approach it.

Problem
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We consider the (nonconvex) problem A\ 2l — 4
‘> - l

minz' Wz, ¢ =

reR"? _(_l

s.t.w? =1,:=1,.\.,n

where W € R"™ is the symetric matrix. The constraints restrict the values of x; to 1 or
—1, so the problem is equivalent to finding the vector with components 41 that
minimizes 2 ' Wx. The feasible set here is finite (it contains 2™ points), thus, is non-
CONVex.

The objective is the total cost, over all pairs of elements, and the problem is to find the
partition with least total cost.

Simple lower bound with duality

We now derive the dual function for this problem. The Lagrangian is



L(z,v)=z2' Wz + Z vi(z? — 1) =z (W + diag(v))z — 1" v.

i=1
We obtain the Lagrange dual function by minimizing over x:

g(v) = inf 2" (W + diag(v))z —1'v =

zeR™
_ [1Ty, W +diag(v) = 0
—00, otherwise

Sa

This dual function provides lower bounds on the optimal value of the difficult problem.
For example, we can take any specific value of the dual variable

V= _)‘min(W)la
This yields the bound on the optimal value p*:
p* > g(v) > —1"v=n),;, (W)

Question Can you obtain the same lower bound without knowledge of duality, but
using the iddea of eigenvalues?
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Convex Optimization book by Stephen Boyd and Lieven Vandenberghe.
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\ Lhe andard inner product between vectors,x and y from R" is given by
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Theory = Matrix calculus

Useful definitions and notations

We will treat all vectors as column vectors by default. The space of real vectors of

length n is denoted by R™, while the space of real-valued m x n matrices is denoted
mXn

by R : X o

Basic linear algebra backgrou)lgh X € R?
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Here x; and y; are the scalar z—'fﬁ cb’fﬁpon s of corresponding vectors.

(X,Y)=tr(X'Y) = zm: Y XYy =tr(YTX) = (Y, X)

The determinant and trace can be expressed in terms of theilgenvalues <X X> = “X “
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Don't forget about the cyclic property of a trace for a square matrices A, B, C, D: E

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

B cox G
The largest and smallest eigenvalues satisfy nPO x 83%
UM .
TA TA
Amin(‘14) = inf & w) )\max(A) = sSup - ’
240 x'x w0 T T

and consequently Vz € R"™ (Rayleigh quotient):
Ain(A)z'z <zT Az < Apax(A)z ' 2

A matrix A € S™ (set of square symmetric matrices of dimension n) is called positive
(semi)definite if for all z # O(for all ) : " Az > (>)0. We denote this as
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A = (=)0.
The condition number of a nonsingular matrix is defined as

r(A) = [|AJlIlA™

Matrix and vector multiplication

Let A be a matrix of size m X n, and B be a matrix of size n x p, and let the product

AB be: 3\ ./ He = LA
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Let A be a matrix of shape m X n, and £ be n x 1 vector, a‘erﬁﬁ)e 1-th component of
the product:

z= Az

mxl e mxd
is given by:

n
Zi = E AikTk
k=1

Finally, just to remind:
e  mynm®  kxn Kz axM

C=AB C'"=B'A"
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eAtB =+ ede? (butif A and B are commuting matrices, which means that
AB = BA, eAt8 = ¢4¢eB) T

- <x,%A>=(XA 4>
z, Ay) = (A z,y) )
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Gradient

Let f(x) : R™ — IR, then vector, which contains all first order partial derivatives:




L
=I{] &
I,
SEPLE
wpessies || = 6%, (W),
CA A !\aPHoehpow)Qﬂgguua MUY
<A 1’5> tr( [5>

tr(/\\ ZO‘ o >>=e

(4243 =



T paguac a0 §R— W(;)

of L R “"e 2
Vi) = L g gt M
. _ ZX
) =[5\
2v \ %

named gradient of f(z).[This vector indicates the direction of steepest ascent] Thus,

vector —V f(x) means the direction of the steepest descent of the function in the
point. Moreover, the gradlent vector is always orthogonal to the contour line in the
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Hessian (X \ =0 X=0
Let f(z) : R™ — R, then matrix, containing all the second order partial derivatives:
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In fact, Hessian could be a tensor in such a way: (f(z) : R® — R™) is just 3d tensor,
every slice is just hessian of corresponding scalar function b V RA’ M
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R R R f'(z) (derivative)

R™ R R™® (gradient)
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R" R™ RMX™ of: (jacobian)
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General concept » VD0, PC A Crﬁg“év( )
Naive approach X(M)

The basic idea of naive approach is to reduce matrix/vector derivatives to the well-
known scalar derivatives.

Matrix notation of a function Matrix notation of a gradient
T
flx)=c'z Vix)=c
Scalar notation of a function I

flx) = Z Ci g _af(x) — Ck

i=1 Or
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Simple derivative
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One of the most important practical tricks here is to separate indices of sum (z) and




dX 1) =-X"1dXx)Xx !
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