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Applications ~ Principal component analysis M‘\AAWUL &w /fltM‘J\Q
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Intuition UA=T A-US V"™ [~

vv=T MXA  Mxm mxn MXN M
Imagine, that you have a dataset of points. Your goal is to choose orthogonal axes, that

describe your data the most informative way. To be precise, we choose first axis in such
a way, that maximize the variance (expressiveness) of the projected data. All the
following axes have to be orthogonal to the previously chosen ones, while satisfy
largest possible variance of the projections.

Let's take a look at the simple 2d data. We have a set of blue points on the plane. We
can easily see that the projections on the first axis (red dots) have maximum variance at

the final position of the animation. The second (and the last) axis should be orthogonal W
to the previous one. eT6 Wi TOowk GQ
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This idea could be used in a variety of ways. For example, it might happen, that

projection of complex data on the principal plane (only 2 components) bring you

enough intuition for clustering. The picture below plots projection of the labeled A
dataset onto the first to principal components (PCs), we can clearly see, that only two »a@

vectors (these PCs) would be enogh to differ Finnish people from Italian in particular

dataset (celiac disease (Dubois et al. 2010)) source

@ H‘DP‘”‘”PEKQ ‘ Y(SLauIBcS- ) yumo Z Q.=
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The first component should be defined in order to maximize variance. Suppose, we've

already normalized the data, i.e. Z a; = 0, then sample variance will become the sum
i



of all squared projections of data points to our vector

optimization problem: Bu& 301'1\' m; = ‘F‘(T)

T, gewse Woputippbsis , O BT, =0

W (1), Whj
;

implies the following

ar-w = (w);

-cb 2 )
VB[ o (e | =5
or

W) = arg maX{HAWH } = arg max {WTATAW}

Tt kR T e B

since we are looking for the unit vector, we can reformulate the problem nxm;('*"
et TATA w AW
Or COSGG Av W(;) = arg max w w )\M“ S—XS A AKX
\N w'w " W W
s becop

t is known, that for positive semidefinite matrix A" A such vector is nothing else, but coSal
eigenvector of AT A, which corresponds to the largest eigenvalue. The following

o
Xw= Aw |w.

wWXw = A-wW
A = _""/X‘ﬁ'

wTW

components will give you the same results (eigenvectors).

CY/4
So, we can conclude, that the following mapping: 8““”

A (A‘ IS) = 52(A> “”E&“E‘ ;1' /W‘_\PC

describes the projection of data onto the k principal components, where W contains

first (by the size of eigenvalues) k eigenvectors of AT A.

Now we'll briefly derive how SVD decomposition could lead us to the PCA.

i)

go‘&

Firstly, we write down SVD decomposition of our matrix:

A=UxW'

mxn MM mxn N N

Qw{w. \q’u‘lq cobes C ’!MOW

Al =Uzw)T
— (WT)TZTUT
=wz'U'
=WxU'

and to its transpose:
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Then, consider matrix AA':
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ATA= WU (UzV")
= WIITW '
= WIIW '
=w=w'

Which corresponds to the eigendecomposition of matrix AT A, where W stands for the
matrix of eigenvectors of AT A, while 2 contains eigenvalues of AT A.

® A=UZW
At the end: uz W
@ NEOLK L WM
];[n wjé“ Wﬂ_ r\r Zr

=USW'W =Ux% @

The latter formula provide us with easy way to compute PCA via SVD with any number

X o
of principal components: J oLk bord
P
I, = U,%, pC
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& Iris dataset pc L ?\’C, w = M
Consider the classical Iris dataset Wi ) ¢
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Theory = Matrix calculus

Useful definitions and notations

We will treat all vectors as column vectors by default. The space of real vectors of
length n is denoted by R™, while the space of real-valued m x n matrices is denoted
by Ran.

Basic linear algebra background

The standard inner product between vectors x and y from R” is given by

n
(@ y) =z'y=) zyi=y'z=(yz)
=1

Here x; and y; are the scalar 2-th components of corresponding vectors.

The standard inner product between matrices X and Y from R™*" is given by

(X,Y)=tr(X'Y) =) zn: XY =tr(Y'X) = (Y, X)

i=1 j=1

The determinant and trace can be expressed in terms of the eigenvalues

detA = ﬁ)\ trA = En: \;
=1 1=1

Don't forget about the cyclic property of a trace for a square matrices A, B, C, D:
tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

The largest and smallest eigenvalues satisfy

T T
Apin(A) = inf TA2 Ao (4) = sup TA2

)
240 T T 240 T X

and consequently Vz € R"™ (Rayleigh quotient):
Ain(A)z'z <zT Az < Apax(A)z ' 2

A matrix A € S™ (set of square symmetric matrices of dimension n) is called positive
(semi)definite if for all z # O(for all ) : " Az > (>)0. We denote this as



2 = 100%Y¥ Xz
A= (2)0. §G) = %P« Wk &(:) A :C.g“o k(A)=15
A -\lo = (06
The condition number of a nonsingular matrix is define?j’ as T G/ A)((Pb
(o] A - —_— —M__
(50 <=L T k(W= v (B

Anix(A
Matrix and vector multiplication A>.O = K(m = Amiv (A)

Let A be a matrix of size m X n, and B be a matrix of size n x p, and let the product
AB be:

C=AB

then C'is am X p matrix, with element (4, j) given by:

n
Cij = E kb,
k=1

Let A be a matrix of shape m X n, and £ be n x 1 vector, then the 7-th component of
the product:

z= Az

is given by:

Finally, just to remind:
C=AB C'"=B'A"
AB # BA
A _ = 1 gk
e = Z EA
k=0
eAt+B F# ee? (butif A and B are commuting matrices, which means that

AB = BA, eAt8 = ¢4¢eB)
(z, Ay) = (A'z,y)

Gradient

Let f(w) : R™ — IR, then vector, which contains all first order partial derivatives:



(55)
of
o df o 0z2

dx

of

\5:/

named gradient of f(z). This vector indicates the direction of steepest ascent. Thus,
vector —V f(x) means the direction of the steepest descent of the function in the

point. Moreover, the gradient vector is always orthogonal to the contour line in the
point.

Hessian

Let f(z) : R™ — R, then matrix, containing all the second order partial derivatives:

0% f 0% f 0% f
O0x10x1 0x10x2 o O0x10xn
0% f 0% f 0% f
f”(gj) _ 82f _ Ox90x1 0x90x9 T Ox90xn
833i8$j
8%f 8%f 8%f
0xn0x1 O0xn0x2 o 0xnO0zn

In fact, Hessian could be a tensor in such a way: (f(z) : R® — R™) is just 3d tensor,
every slice is just hessian of corresponding scalar function

(H (f1(2)), H (f2(2)), - -, H (fm(2)))-

Jacobian

The extension of the gradient of multidimensional f(x) : R™ — R™ is the following
matrix:

Ofr  Ofr Of1
0z1 0z2 o Ozn \
Ofs  Ofr Ofy

f’( ) df 0z Ozo to Ozn

r) = —— —=
dzT

Ofm  Ofm %]
or1 0o o Oxy

Summary



0f ()

f(z) : X =Y, cG
ox

X Y G Name

R R R f'(z) (derivative)

R" R R" (gradient)
8mi

R" R™ RMX™ 0f: (jacobian)
0acj

mxn mxn 8f

R R R o)

General concept

Naive approach

The basic idea of naive approach is to reduce matrix/vector derivatives to the well-
known scalar derivatives.

Matrix notation of a function Matrix notation of a gradient
flz)=c'a Vf(z)=c
l
Scalar notation of a function I
n
0f ()
flx) = Zcia:@- ——— =g,
i=1 Oz
o —_ .

Simple derivative

Of(x) 0> i cims)

aibk 5’&3/{

One of the most important practical tricks here is to separate indices of sum (z) and




partial derivatives (k). Ignoring this simple rule tends to produce mistakes.

Differential approach

The guru approach implies formulating a set of simple rules, which allows you to
calculate derivatives just like in a scalar case. It might be convenient to use the
differential notation here. % . Qn—? Hz

Differentials dS = §(x+de) - 569 ldx]l—o Zeqarar
After obtaining the differential notation of d f we can retrieve the grad‘lggwng noc'qu'K:

v

following formula:

ﬂouwr Ms df

Then, if we have differential of the above form and we need to calculate

derivative of the matrix/vector function, we treat “old” dx as the constant dz{, then
calculate d(df) = d? f(x)

d*f(z) = (V? f(x)dz,,dz) = (Hf(x)dz,,dz) df= 4..., x>

. 7,
. 0 otler
Properties
Let A and B be the constant matrices, while X and Y are the variables (or matrix
functions).
dA =0

d(aX) = a(dX)
d(AXB) = A(dX)B

(
AX+Y)=dX +dy
d(X') = (dx)'
d(XY) = (dX)Y + X(dY)
d(X,Y) = (dX, Y> (X,dY)

SH

ﬁ) quX dop) X
5
det X :detX<XTdX>
< X) = (I, dX)
af(g(2) = Y dg(a)
g
H= (V)T
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- d(4< Mo -0 =
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= -L(<olx Ax>+<x,e((Ax3>) M -{dx,b> + O =
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= ¢ 2(Ax-B), NdX > =
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TE = AX + QAf(AX~b> R

(xl Nx4 M mn pxl Mxi
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) df <d(be0)= Y =E(XY)

= d (tr(T x)> = tr (V%)

'ol(<XI>> <l 1> + <X, dT>=
* =<T K> => v{’— T

Mbl HCL%WC& ouI KTo V{’ KA Ts’e 7

AF = ¢of )o(><?

Kak cwraw Q“Z ‘VF
5} df= £o8 x> dx: ‘-O(Xj_ CLUT AR

Q) @((d{—) d2g _d ({Vg_ o\x:§: ok, = const
= ¢d@® x> /s“
3) Npubecs & buggy: A= olx dbo

.),‘



Npuusep: R = %XTAX - ¥ xtC
l> b= ¢ L(AK)x- b, dx>

dX“AKA_
> Cugee s o= a@(( .%(A+A'>x~b O(X;‘))

_ (A ()% bol> =
_ (Lo{(@m‘)x) olxs) =
= </i (AU\))@\X s> = [§ = :L(P‘J‘Aj

CTMETe olxg T
J AJ(A) A

db=0

= <0lx 'L(A"P‘)AX‘ — A '\
- (MY o>
¥ 6 - [ blls 2 F=7
» Foo = e - T MMy
Pavnenue: el ;(QJ\T(Ax-\;Bf Ax) elx > dxmdx,
9 d@s - JdF = d2¥=(,,<!x)o\x‘)
y MeTp
= LA@R(MB) +AR) x> = 7

e / \



K
d(Ax-©)
ol (
AX)
= A
-olx

=_:z N
oty
-0

&
C
_ <(;2M
K :
m?ai”
elxle 8
1)1 ‘
L.
V=v (A
A =

S\
A

et —
0

oc d (e
(zf(? :
A
e

= <d
s)
A
XD+
¢
P, «Mg
D



dX 1) =-X"1dXx)Xx !

References

Convex Optimization book by S. Boyd and L. Vandenberghe - Appendix A.
Mathematical background.

Numerical Optimization by J. Nocedal and S. J. Wright. - Background Material.
Matrix decompositions Cheat Sheet.

Good introduction

The Matrix Cookbook

MSU seminars (Rus.)

Online tool for analytic expression of a derivative.

Determinant derivative



