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Automatic differentiation is a scheme, that allows you to compute a value of gradient of
function with a cost of computing function itself only twice.
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We will illustrate some important matrix calculus facts for specific cages (cos(g,ysx)
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Multivariate chain rule

The simplest example:
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Now, we'll consider f : R™ — R:
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But if we will add another dimension f : R” — R™, than the j-th output of f will be:
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where matrix J € R™*™ is the jacobian of the f. Hence, we could write it in a vector
way:
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Backpropagation \*xn ()
The whole idea came from the applying chain rule to the computat|on graph of primitive
operations
L =L (y(2(w,z,b)),t)
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All frameworks for automatic differentiation construct (implicitly or explicitly)
computation graph. In deep learning we typically want to compute the derivatives of



Wewuh ot

the loss function L w.r.t. each intermediate parameters in order to tune them via
gradient descent. For this purpose it is convenient to use the following notation:
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Letvq,...,vN be atopological ordering of the computation graph (i.e. parents come

before children). vy denotes the variable we're trying to compute derivatives of (e.g.
loss).
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Forward pass: O\@___@
- Fort=1,...,N: b/ B«()Z\

Compute v; as a function of its parents.

Backward pass:
vy =1
Fori=N—1,...,1:
__Ov;

Compute derivatives v; = >, v
j€Children(v;) avi

v .
! is already precomputed
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Note, that v; term is coming from the children of v;, while

effectively.
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Jacobian vector product

The reason why it works so fast in practice is that the Jacobian of the operations are
already developed in effective manner in automatic differentiation frameworks.
Typically, we even do not construct or store the full Jacobian, doing matvec directly
instead.

Example: element-wise exponent
y = exp (2) J = diag(exp(z)) z=1yJ

See the examples of Vector-Jacobian Products from autodidact library:

defvjp(anp.add, lambda g, ans, X, : unbroadcast(x, g),

lambda g, ans, X, : unbroadcast(y, g))
defvjp(anp.multiply, lambda g, ans, X, : unbroadcast(x, y * g),
lambda g, ans, X, : unbroadcast(y, x * g))
defvip(anp.subtract, lambda g, ans, X, : unbroadcast(x, g),
lambda g, ans, X, ! unbroadcast(y, -g))
defvjp(anp.divide, lambda g, ans, x, : unbroadcast(x, g/y,

lambda g, ans, X, : unbroadcast(y, — g * x / y*%2))
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defvip(anp.true_divide, lambda g, ans, X, : unbroadcast(x, g’y



lambda g, ans, X, y : unbroadcast(y, — g *x X / y*x2))
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Hessian vector product
Interesting, that the similar idea could be used to compute Hessian-vector products,
which is essential for second order optimization or conjugate gradient methods. For a
scalar-valued function f : R™ — R with continuous second derivatives (so that the
Hessian matrix is symmetric), the Hessian at a point z € R™ is written as 82f(v:1’c) A Q
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The trick is not to instantiate the full Hessian matrix: if n is large, perhdps in the millions
or billions in the context of neural networks, then that might be impossible to store.
Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an
efficient Hessian-vector product function. We just have to use the identit H=

Qz =(°""¥o°°"\ Y -:.‘AMJC
02 f(z)v = Oz > 0f(z) -v] = Dg(z), V=(1,0,00--0) EHIW
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where g(z) = 0f(x) - v is a new vector-valued function that dots the gradient of f a
x with the vector v. Notice that we're only ever differentiating scalar-valued functions

of vector-valued arguments, which is exactly where we know grad is efficient.
import jax.numpy as jnp

def hvp(f, x, v):

return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Code

<L Openin Colab

Materials



Autodidact - a pedagogical implementation of Autograd
CSC321 Lecture 6

CSC321 Lecture 10

Why you should understand backpropagation :)

JAX autodiff cookbook

Materials from CS207: Systems Development for Computational Science course
with very intuitive explanation.
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Suppose x, x5 are two points in R". Then the line segment between them~g defined

as follows: QA

Theory = Convex sets = Convex set
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r=0zr,+ (1—6)z,y, 6€][0,1]
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Convex set
The set §'is called convex if for any x, x5 from S the line segment between them also
liesin S, i.e.
Vo € |0,1], Ve, 2y € S: 0z, + (1 —0)zy € S
Examples:

Any affine set
Ray

Line segment
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Related definitions

Convex combination

Letxy, xs,...,xr € S, thenthe point @, x; + Oy + ...+ Orxy is called the convex

k
combination of points 1, zs,...,xxif > 6; =1, ; > 0.
i=1



Convex hull ‘5'0‘“3&-*“& R LK G

The set of all convex combinations of points from .S is called the convex hull of the set

S.

k k
conv(S) = {ZO,:C, | x; € S,ZOZ- =1, 0, > 0}
i=1 i—1

The set conv(S) is the smallest convex set containing S.

The set S is convex if and only if S = conv(S).

Examples:
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Finding convexity

In practice it is very important to understand whether a specific set is convex or not.
Two approaches are used for this depending on the context.

By definition.
Show that .S is derived from simple convex sets using operations that preserve
convexity. ﬂ()UMP AL Hewsnu  onfusmAnaiot on-80
— Nogesd & ool o'r%m\?
1Nt —_—— - - e ey
By definition © L 2 > « 5 ronto
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Preserving convexity

The linear combination of convex sets is convex
Let there be 2 convex sets S, S, let the set
S={s|s=cixt+cyy, xS, ycS,, c1,co €R}

Take two points from S: s; = ¢z + ¢cay1, S92 = ¢1T9 + oYy and prove that the
segment between them fs; + (1 — 6)s,, 60 € [0, 1] also belongs to S

0s1 + (1 — 6)s,
0(c1z1 + coy1) + (1 = 0)(c1@2 + c2y2)
c1(0z; + (1 — 0)xy) + c2(0y; + (1 — 6)ys)
cix+cye S

The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by
definition. Otherwise, take 2 points and a segment between them. These points must lie
in all intersecting sets, and since they are all convex, the segment between them lies in
all sets and, therefore, in their intersection.

The image of the convex set under affine mapping is convex
S CR" convex — f(S)={f(z) |z € S}convex (f(xz)= Az+Db)

Examples of affine functions: extension, projection, transposition, set of solutions of
linear matrix inequality {z | x14; + ... + z,,A,, X B}.Here A;, B € SP are
symmetric matrices p X p.

Note also that the prototype of the convex set under affine mapping is also convex.

S CR™convex — f 1(S)={z € R"| f(z) € S} convex (f(z)= Az +Db)
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Theory =~ Convex function

Convex function

The function f(x), which is defined on the convex set S C R", is called convex on
S, if:

FfAzy + (1 = XN)zy) < Af(zq) + (1 — A) f(zy)

forany z;, 29 € Sand 0 < A < 1.
If above inequality holds as strict inequality ; # x4 and 0 < A < 1, then function is
called strictly convex on S.

X2 ——  Convex

N
—— Non Convex
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Examples § - seingknas
f(z)=2P, p>1, ze€R, X},,\
f(z) = |z|’, p>1lzeR"
f(x) =€, ceR,zeR >%
f(z) =—Inz, xR,
f(z) =xzlnz, zcR,

The sum of the largest k coordinates f(z) = ;) +... + ), x€R"
F(X) = XApae(X), X=X"






f(X) = —logdet X, X ecS7

Epigraph

For the function f(z), defined on S C R™, the following set:

epi f = {[z,pu] € S X R: f(z) < p}

is called epigraph of the function f(z).

X5
\\ //
— f(x)
\\\_/// —  Epifx)
X
Sublevel set

For the function f(z), defined on S C R™, the following set:
Ls={zeS: f(z) <p}

is called sublevel set or Lebesgue set of the function f(x).
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f(X)' == Sublevel set
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Criteria of convexity

First order differential criterion of convexity

The differentiable function f(z) defined on the convex set S C R™ is convex if and
only if Ve, y € S:

fy) = f(=@) + Vi (z)(y— )

Let y = x + Ax, then the criterion will become more tractable:

flz+ Az) > f(z) + Vil (z)Az



——  Function

f(X) ~ Global linear
A lower bound

Second order differential criterion of convexity

Twice differentiable function f(z) defined on the convex set S C R™ is convex if and
only if Vz € int(S) # 0:

Vif(z) = 0

In other words, Vy € R™:

(y, V2 f(2)y) >0

Connection with epigraph

The function is convex if and only if its epigraph is a convex set.

Connection with sublevel set

If f(x) - is a convex function defined on the convex set S C R™, then for any 3
sublevel set L3 is convex.

The function f(x) defined on the convex set S C R™ is closed if and only if for any /3
sublevel set L3 is closed.

Reduction to aline
f S — Ris convex if and only if S is a convex set and the function g(t) = f(x + tv)



defined on {t | 4 tv € S} is convex for any € S, v € R™, which allows to check
convexity of the scalar function in order to establish (i'onvexity of the vector function.
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Strong convexity

f(x), defined on the convex set S C R", is called p-strongly convex (strongly
convex) on S, if:

FOzy + (1= Nzo) < Af(21) + (1= A) f(za) — A1 = N2y — 25|

A
forany z;,x5 € Sand 0 < A < 1 for some p > 0. \ ,{i
——  Function Y
f (X) ___ Global quadratic
A lower bound
>
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Criteria of strong convexity

First order differential criterion of strong convexity

Differentiable f(z) defined on the convex set S C R™ is u-strongly convex if and only
if Ve, y € S:

@) 2 f(@) + VT @)y — o) + Zy — 2]’

Let y = x + Ax, then the criterion will become more tractable:



f(z + Az) > f(z) + VT (2)Az + %umn?

Second order differential criterion of strong convexity

Twice differentiable function f(z) defined on the convex set S C R™ is called p-
strongly convex if and onlxilf Vz € int(S) # 0:

1= BIx|[- #F -l 2o
b V2f(z) = pl B
In other words: k= (X 'A>0
A ey S

Facts M x’““/( Q mw(?a:w&mm

f(a:) is called (strictly) concave, if the function —f(:z:) - is (strictly) convex.

Jensen's inequality for the convex functions:

fora; > 0; > a; = 1 (probability simplex)
i—1

For the infinite dimension case:

£ [ertrie | < [ f@mp(e)de
S

S

If the integrals existand p(z) > 0, [p(z)dz =
s

If the function f(z) and the set .S are convex, then any local minimum
x* = argmin f(zz:) will be the global one. Strong convexity guarantees the
z€S

uniqueness of the solution.

Operations that preserve convexity



Non-negative sum of the convex functions: af(z) + Bg(z), (o > 0,8 > 0).
Composition with affine function f( Az + b) is conve, if f(z) is convex.

Pointwise maximum (supremum): If f;(x), ..., f,,(x) are convex, then

f(z) = max{f(z),..., f(x)} is convex.

If f(x,y) is convexonz forany y € Y: g(x) = sup f(z,y) is convex.
yeyY

If f(x)is convex on S, then g(x,t) = tf(x/t) -is convex withz/t € S,t > 0.

Let f; : S; — Rand f, : Sy — R, where range(f;) C S,. If f; and f, are
convex, and f, is increasing, then f, o f; is convex on §S.

Other forms of convexity

Log-convex: log f is convex; Log convexity implies convexity.
Log-concavity: log f concave; not closed under addition!
Exponentially convex: [f(z; + x;)] = 0, forzq,...,z,

Operator convex: f(AX + (1 = A)Y) 2 Af(X) + (1 =N f(Y)
Quasiconvex: f(Az + (1 — A)y) < max{f(z), f(y)}
Pseudoconvex: (Vf(y),z —y) > 0 — f(z) > f(y)

Discrete convexity: f : Z™ — Z; "convexity + matroid theory."
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