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A classical problem of function minimization is ‘:onsidered.
Thi1 = Tk — T%Vf(wk) (GD)

The bottleneck (for almost all gradient methods) is choosing step-size, which can
lead to the dramatic difference in method'’s behavior.

One of the theoretical suggestions: choosing stepsize inversly proportional to the
. : . 1
gradient Lipschitz constant 7, = f

In huge-scale applications the cost of iteration is usually defined by the cost of
gradient calculation (at least O(p)).

If function has Lipschitz-continious gradient, then method could be rewritten as
follows:

1
Lkl = Tk — fvf(xk) -

) L
= arg min {f(flfk) + (Vf(xp),z —x) + — ||z — wkHEl
ZER( 2 )

heunpech e ot Wasuonra ¢ kanpabronug  kAuckoped Ueto
AOK AbHOT O

Intuition Yd o bt s,

= VS(%0) L g s

Direction of local steepest des ent . cxogures. ¢ 7

Let's consider a linear approximation ﬁ_tk_ﬁé ‘serehnabl function f along some
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and going to the limit at  — 0: (S8 h:
(@), k) <0
Also from Cauchy-Bunyakovsky—Schwarz inequality:

[(F'@), W< F' @)2lllz = (), k) = = [l (@)ll2[[Rll2 = =] f ()]

Thus, the direction of the antigradient

)
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gives the direction of the steepest local decreasing of the function f.

The result of this method is

LTht1 — Tk — Uf’(xk)

Gradient flow ODE

Let's consider the following ODE, which is referred as Gradient Flow equation.
dx ,
- _ t
= —fa()

and discretize it on a uniform grid with 7 step:

Lky1 — Tk

n - _f/(xk)a

where ), = z(tr) and n = tx, 1 — tx - is the grid step.
From here we get the expression for x4

LTht1 — Tk — Uf,(mk)a

which is exactly gradient descent.

Necessary local minimum condition
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This is, surely, not a proof at all, but some kind of intuitiv explana’uon8 10

Minimizer of Lipschitz parabola “V% - V%(8>“< LJ,(X%“\

Some general highlights about Lipschitz properties are needed for explanation. If a
function f : R™ — R is continuously differentiable and its gradient satisfies Lipschitz

conditions with constant L, then Va,y € R™: L= 4
L L,= 1000
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which geometrically means, that if we'll fix some point £y € R™ and define two
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¢1(x) = f(zo) + (VFf(z0), T — o) — EHx — zo|?,
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Then

b1(z) < f(z) < Po(z) Vz € R™.

Now, if we have global upper bound on the function, in a form of parabola, we can try to
go directly to its minimum.
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Tt =1z — %Vf(fﬂﬂ)
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This way leads to the % stepsize choosing. However, often the L constant is not
known.

But if the function is twice continuously differentiable and its gradient has Lipschitz
constant [, we can derive a way to estimate this constant Vx € R": Qo
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Stepsize choosing strategies “vowse 19 Lo €

Stepsize choosing strategy 7y, significantly affects convergence. General Line search
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flen) = flowa) = n (1= 320) IV @)

With choosing n = %, we have:

Fixed sequence < fedu Loy

1
T e

The latter 2 strategies are the simplest in terms of implementation and analytical

analysis. It is clear that this approach does not often work very well in practice (the
function geometry is not known in advance).

Exact line search aka steepest descent

1 = arg min f(zisr) |- arg min £z, — 7V ()
neERT neRT

More theoretical than practical approach. It also allows you to analyze the convergence,
but often exact line search can be difficult if the function calculation takes too long or
costs a lot.

Interesting theoretical property of this method is that each following iteration is
orthogonal to the previous one:

nr = arg min f(zx — 9V f(zr))
neR™

Optimality conditions:

D&m ‘Z%(
Vf(wk+1)TVf(CUk) =0 CT:(?: ? \(amP“:‘:)““ :
X kK& Aeko

Goldstein-Armijo

%(XK— N V"Z (N:» —;I;'w&-(-f
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Convex case

Lipischitz continuity of the gradient

Assume that f : R™ — R is convex and differentiable, and additionally
IVf(z) = Vi)l = Lljz — yl| Yo,y € R

i.e., V fis Lipschitz continuous with constant L > 0.

Since V f Lipschitz with constant L, which means V2 f < LI, we have Vz, y, z:
(z—y) (V*f(2) - LI)(z —y) <0
(z—y) ' Vf(2)(z —y) < Lllz -y

Now we'll consider second order Taylor approximation of f(y) and Taylor’s Remainder
Theorem (we assum, that the function f is continuously differentiable), we have
Ve,y, 3z € [z,y] :

f(y) = f(@)+ V() (=) + 5 (2 — ) V2 F(E) (@ )

< f(@) + V@) (y—2) + e —y)?

For the gradient descent we have & = x, y = Tk 1, Trr1 = T — NV f(Tk):

L

Farer) < Flax) + VH@n) T (9 F@) + 2 9 £’
< flo) -~ (1- Z) v s

Optimal constant stepsize

Now, if we'll consider constant stepsize strategy and will maximize

Ln 1
11— — — ,we'llgetn = —.
(1= 57— ma wenoonn = 5

floran) < f@) = 52 IV F )

Convexity
flzr) < f(z") + Vf(zr)  (zx — z7)

That's why we have:
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Thus, summing over all iterations, we have:

where R = ||z — «*||. And due to convexity:
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Strongly convex case

If the function is strongly convex:

£0) = f(@) + V@) (y—2) + £y — o) vay e R

[zher — 2*[1* < (L —nu)lley — 27|

Bounds
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The zen of gradient descent. Moritz Hardt WC}Q’%L

Great visualization

Ckeatsheet on the different convergence theorems proofs .
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Vocedal Wright

Methods =~ Adaptive metric methods = Newton method MLIMZW C™ Z ,OPﬁ mi ZC(UCY/J

Intuition

Newton's method to find the equation’ roots

Consider the function ¢(x) : R — R. Let there be equation ¢(z*) = 0. Consider a
linear approximation of the function go(a:) near the solution (z* — x = Ax):

p(z") = p(z + Az) = p(z) + ¢'(z)Az.
We get an approximate equation:
p(z) +¢'(z)Az =0

p(z)

p will be close to the
©'(x)

We can assume that the solution to equation Ax = —

optimal Az* = z* — x.

We get an iterative scheme:

Lit1 — Tk —

¥

WL NOUCKS N4 (x>
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T
This reasoning can be applied to the unconditional minimization task of the f(x)
function by writing down the necessary extremum condition:

f'(a) =0



Here p(z) = f'(z), ¢'(x) = f"(x). Thus, we get the Newton optimization method in
its classic form: Xeas= Yo+ o’,,w = dnew = K= Xg

Tiy1 = 2k — | (zk)]

With the only clarification that in the multidimensional case: \ ‘ng"v?
lC:

z € R, f'(z) = Vf(z) € R", f'(z) = V2f(z) € R™™.  Your-

V66 (e % = 718
Second order Taylor approximation of the function v‘&’(@-dmi"”(’("*\

Let us now give us the function f(z) and a certain point . Let us considerthesquare

-1

f'(zk). (Newton)

approximation of this function near x:

F(&) = Fa) + {7y z = oa) + 5 (F" (@)@ — 22— ).

The idea of the method is to find the point xj_ 1, that minimizes the function f(w) ie.
Vf(zri1) = 0.

)

f(x)

f(xk+1)

\ 4

Xe  Xkp1 Xkro X

Vf(@ri) = f'(zr) + " (xr) (@re1 — 22) = 0
' (@r) (Tr — ib'k) —f'(xx)
[F" (k)] " () (@rgn — ) = = [F"(zx)] " f' (1)
LTk+1 — Tk — [f"(wk)} 71f/($k)-



Let us immediately note the limitations related to the necessity of the Hessian's non-
degeneracy (for the method to exist), as well as its positive definiteness (for the
convergence guarantee).

—f(x) )
2| —quadratic approx.

-4 -2 0 2 L

Quadratic approximation and Newton step (in green) for varying starting points (in red).
Note that when the starting point is far from the global minimizer (in 0), the Newton
step totally overshoots the global minimizer. Picture was taken from the post.

Convergence



Let's try to get an estimate of how quickly the classical Newton method converges. We
will try to enter the necessary data and constants as needed in the conclusion (to
illustrate the methodology of obtaining such estimates).

vy — ' =z = [f@n)] o) -2t =an— 2 = [ @n)] () =
=z —z" — [f" ()] / Fi (& + 7(ze — 27))(zp — 2")dr =

(1— / £(z" T(wk—x*))d7'>(:ck—x*)=

£ (@) (f”(wk)— [ 1@+ o= aar ) - o) -

= (1) ([ (@) = 7 o 2 - o) =
= [#"(z1)] " Gulas — 27)

Used hereis: G, = fol (f”(mk) — f”(CU* + T(a}k — w*))dT) Let's try to estimate the
size of G,:



|G| = /01 (7" (zr) = f" (2" + 7(xx — z7))dT)

<

1
< / ||f”(513k) — (" + 7(zp — :I:*))HdT < (Hessian’s Lipschitz continuity)
0

1 1
< [ M=o —r(o = ar = [ Ml — a1 - n)ir = T,
0 0

where ry, = ||z — x*||.

So, we have:

Thi1 S H [f”(:vk)}_lH : %M'Tk

Already smells like quadratic convergence. All that remains is to estimate the value of
Hessian's reverse.

Because of Hessian's Lipschitz continuity and symmetry:

f(xr) — f'(2") = —Mrd,
f(zr) = f'(x*) — MriI,
f(xr) = pl, — Mri I,
f(xx) = (0 — Mry)I,

So, (here we should already limit the necessity of being f”(x) > 0 for such
estimations, i.e. r;, < %).

|17 @] | < (= pri) !

r2 M
Tk+1 < i
2(u — Mry)

The convergence condition 7, ; < 7} imposes additional conditions on

: 2p
T - 7°k<3_M

Thus, we have an important result: Newton’s method for the function with Lipschitz

. . . 2 .
positive Hessian converges quadratically near (||x0 —z* || < 3—]\’2) to the solution.

Theorem

Let f(x) be a strongly convex twice continuously differentiated function at R", for the
second derivative of which inequalities are executed: uI,, < f”(x) < LI,. Then



Newton’s method with a constant step locally converges to solving the problem with
superlinear speed. If, in addition, Hessian is Lipschitz continuous, then this method

ke AC

converges locally to * at a quadratic rate.

Summary o

It's nice:

H()@aeo HTHO guexpo

quadratic convergence near the solution z*

affinity invariance

the parameters have little effect on the convergence rate }6

n=I0 n-= [0
" =1

it is necessary to store the hessian on each iteration: O(n?) memory

It's not nice:

it is necessary to solve linear systems: O(n?) operations
the Hessian can be degenerate at *

the hessian may not be positively determined — direction —(f”(z)) ! f'(x) may

not be a descending direction 56:_‘}‘ a%K
- ;;(x)

Possible directions > O/ . O
Newton's damped method (adaptive stepsize) yoxep. TeH 200K 617
Quasi-Newton methods (we don't calculate the HeSS|an, we bUI|d its estimate - qu
BFGS) P

Quadratic evaluation of the function by the first order oracle (superlinear
convergence)

The combination of the Newton method and the gradient descent (interesting
direction)

Higher order methods (most likely useless)

Materials

Going beyond least-squares - | : self-concordant analysis of Newton method

Going beyond least-squares — Il : Self-concordant analysis for logistic regression



Picture with gradient and Newton field was taken from this tweet by Keenan Crane.

About global damped Newton convergence issue. ikl
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Methods = Adaptive metric methods = Quasi Newton methods

Intuition

For the classic task of unconditional optimization f(x) — min the general scheme of
zeR”

iteration method is written as:
Thy1 = Tk + OSk

In the Newton method, the s; direction (Newton's direction) is set by the linear system
solution at each step:

s, = —BiVf(zy), Br= f}(xx)

i.e. at each iteration it is necessary to compensate hessian and gradient and resolve
linear system.

Note here that if we take a single matrix of By, = I,, as By, at each step, we will exactly
get the gradient descent method.

The general scheme of quasi-Newton methods is based on the selection of the By,
matrix so that it tends in some sense at k — oo to the true value of inverted Hessian in
the local optimum f__1(z.). Let's consider several schemes using iterative updating of
By, matrix in the following way:

By = By + ABy
Then if we use Taylor's approximation for the first order gradient, we get it:
Vi(@r) = VI(@ri1) = for(@he1) @k — Trea)-
Now let’s formulate our method as:
Az = Bgy1Ayx, where Ayp =V f(zri1) — VF(zr)
in case you set the task of finding an update A By:

AB Ay, = Az, — BrAys,

Broyden method

The simplest option is when the amendment A B}, has a rank equal to one. Then you



can look for an amendment in the form

ABj = prqrq -

where py, is a scalar and gy, is a non-zero vector. Then mark the right side of the
equation to find A B}, for Azy:

Azk - Amk - BkAyk

We get it:
T _
Lrqrqr Ayr = Azy,
(1r - ax Ayr)qr = Az
. . . T -1

A possible solution is: g = Az, pr = (qk Ayk) :
Then an iterative amendment to Hessian's evaluation at each iteration:

(Azy — BrAyr)(Az, — BrAyg) '

ABj =
: (Azy, — BrAyy, Ay)

Davidon-Fletcher-Powell method
ABj = ,ulAa:k(Aa:k)T + ,u2BkAyk(BkAyk)T.

AB, — (Azg)(Azy)"  (BrAyx)(BrAys)'
(Azg, Ayg) (BrAygk, Ayg)

Broyden-Fletcher-Goldfarb—Shanno
method

a c
AB,=QUQ', Q=lq,ql, @¢,9 €R", UZ(C b)'

Azi)(Axi) " B Ay)(BrAyg) "
AB, — (Bze)(Aze)  (BrAye)(BrAye) + e
(Azg, Ayr) (BrAyg, Ayg)
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Comparison of quasi Newton methods




