
Applications / Linear least squares

In a least-squares, or linear regression, problem, we have measurements

and and seek a vector such that is close to . Closeness is defined

as the sum of the squared differences:

also known as the -norm squared,

For example, we might have a dataset of users, each represented by features.

Each row of is the features for user , while the corresponding entry of is the

measurement we want to predict from , such as ad spending. The prediction is given

by .

We find the optimal by solving the optimization problem

Let denote the optimal . The quantity is known as the residual. If

, we have a perfect fit.

Note, that the function needn’t be linear in the argument but only in the parameters

that are to be determined in the best fit.

Problem

X ∈ Rm×n

y ∈ Rm θ ∈ Rn Xθ y

m∑
i=1

(x⊤
i θ − yi)2

l2 ∥Xθ − y∥2
2

m n

x⊤
i X i yi y

x⊤
i

x⊤
i θ

θ

∥Xθ − y∥2
2 → min

θ∈Rn

θ∗ θ r = Xθ∗ − y

∥r∥2 = 0

x θ

https://fmin.xyz/docs/applications/Applications/

If the matrix is relatively small, we can write down and calculate exact solution:

where is called pseudo-inverse matrix. However, this approach squares the

condition number of the problem, which could be an obstacle in case of ill-conditioned

huge scale problem.

For any matrix there is exists QR decomposition:

where is an orthogonal matrix (its columns are orthogonal unit vectors meaning

 and is an upper triangular matrix. It is important to notice, that

since , we have:

Approaches

Moore–Penrose inverse
X

θ∗ = (X ⊤X)−1X ⊤y = X †y,

X †

QR decomposition
X ∈ Rm×n

X = Q ⋅ R,

Q

Q⊤Q = QQ⊤ = I R

Q−1 = Q⊤

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

Now, process of finding theta consists of two steps:

For any positive definite matrix there is exists Cholesky decomposition:

where is an lower triangular matrix. We have:

Now, process of finding theta consists of two steps:

Note, that in this case the error stil proportional to the squared condition number.

QRθ = y ⟶ Rθ = Q⊤y

Find the QR decomposition of .1 X

Solve triangular system , which is triangular and, therefore, easy to

solve.

2 Rθ = Q⊤y

Cholesky decomposition
A ∈ Rn×n

X ⊤X = A = L⊤ ⋅ L,

L

L⊤Lθ = y ⟶ L⊤zθ = y

Find the Cholesky decomposition of .1 X ⊤X

Find the by solving triangular system 2 zθ = Lθ L⊤zθ = y

Find the by solving triangular system 3 θ Lθ = zθ

https://fmin.xyz/

Open in ColabOpen in Colab

CVXPY documentation

Interactive example

Jupyter notebook by A. Katrutsa

Code

References
•

•

•

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Least_squares.ipynb
https://www.cvxpy.org/examples/basic/least_squares.html
http://setosa.io/ev/ordinary-least-squares-regression/
https://nbviewer.jupyter.org/github/amkatrutsa/MIPT-Opt/blob/master/16-LSQ/Seminar16en.ipynb

Applications / Minimum volume ellipsoid

Let be the points in . Given these points we need to find an ellipsoid, that

contains all points with the minimum volume (in 2d case volume of an ellipsoin is just

the square).

An invertible linear transformation applied to a unit sphere produces an ellipsoid with

the square, that is times bigger, than the unit sphere square, that’s why we

parametrize the interior of ellipsoid in the following way:

Sadly, the determinant is the function, which is relatively hard to minimize explicitly.

However, the function is actually convex, which provides a

great opportunity to work with it. As soon as we need to cover all the points with

ellipsoid of minimum volume, we pose an optimization problem on the convex function

with convex restrictions:

Problem

x1, … , xn R2

det A−1

S = {x ∈ R2 | u = Ax + b, ∥u∥2
2 ≤ 1}

log det A−1 = − log det A

min
A∈R2×2,b∈R2

− log det(A)

s.t. ∥Axi + b∥ ≤ 1, i = 1, … , n

A ≻ 0

https://fmin.xyz/
https://fmin.xyz/docs/applications/Applications/

Open in ColabOpen in Colab

Jupyter notebook by A. Katrutsa

https://cvxopt.org/examples/book/ellipsoids.html

3

2

Code

References
•

•

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Ellipsoid.ipynb
https://colab.research.google.com/github/amkatrutsa/MIPT-Opt/blob/master/01-Intro/demos.ipynb#scrollTo=W264L1t1p3mF
https://fmin.xyz/docs/applications/ellipsoid/CVXOPT%20documentation

Applications / Neural network Lipschitz constant

It was observed, that small perturbation in Neural Network input could lead to

significant errors, i.e. misclassifications.

Lipschitz constant bounds the magnitude of the output of a function, so it cannot

change drastically with a slight change in the input

In this notebook we will try to estimate Lipschitz constant of some convolutional layer

of a Neural Network.

Open in ColabOpen in Colab

Lipschitz constant of a convolutional layer
in neural network

+0.001x

Bagle

STOP
+0.001x

stopsign

STOP

teddy
∥NN(image) − NN(image + ε)∥ ≤ L∥ε∥

Code

https://fmin.xyz/
https://fmin.xyz/docs/applications/Applications/
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Neural_Lipschitz.ipynb

Applications / Two way partitioning problem

Suppose, we have a set of objects, which are needed to be splitted into two groups.

Moreover, we have information about the preferences of all possible pairs of objects to

be in the same group. this information could be presented in the matrix form:

, where is the cost of having -th and -th object in the same

partitions. It is easy to see, that the total number of partitions is finite and eqauls to .

So this problem can in principle be solved by simply checking the objective value of

each feasible point. Since the number of feasible points grows exponentially, however,

this is possible only for small problems (say, with). In general (and for n larger

than, say,) the problem is very difficult to solve.

For example, bruteforce solution on MacBook Air with M1 processor without any explicit

parallelization will take more, than a universe lifetime for .

Intuition

n

W ∈ Rn×n {wij} i j

2n

n ≤ 30
50

n = 62

https://fmin.xyz/
https://fmin.xyz/docs/applications/Applications/

Despite the hardness of the problems, there are several ways to approach it.

We consider the (nonconvex) problem

where is the symetric matrix. The constraints restrict the values of to or

, so the problem is equivalent to finding the vector with components that

minimizes . The feasible set here is finite (it contains points), thus, is non-

convex.

The objective is the total cost, over all pairs of elements, and the problem is to find the

partition with least total cost.

We now derive the dual function for this problem. The Lagrangian is

Problem

min
x∈Rn

x⊤Wx,

s.t. x2
i = 1, i = 1, … , n

W ∈ Rn xi 1
−1 ±1

x⊤Wx 2n

Simple lower bound with duality

We obtain the Lagrange dual function by minimizing over :

sa

This dual function provides lower bounds on the optimal value of the difficult problem.

For example, we can take any specific value of the dual variable

This yields the bound on the optimal value :

Question Can you obtain the same lower bound without knowledge of duality, but

using the iddea of eigenvalues?

Open in ColabOpen in Colab

Convex Optimization book by Stephen Boyd and Lieven Vandenberghe.

L(x, ν) = x⊤Wx +
n∑

i=1

νi(x2
i − 1) = x⊤(W + diag(ν))x − 1⊤ν.

x

g(ν) = inf
x∈Rn

x⊤(W + diag(ν))x − 1⊤ν =

= {1⊤ν, W + diag(ν) ⪰ 0
−∞, otherwise

ν = −λmin(W)1,

p∗

p∗ ≥ g(ν) ≥ −1⊤ν = nλmin(W)

Code

References
•

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Partitioning.ipynb
https://web.stanford.edu/~boyd/cvxbook/

Some necessary or/and sufficient conditions are known (See Optimality conditions. KKT

and Convex optimization problem)

In fact, there might be very challenging to recognize the convenient form of

optimization problem.

Analytical solution of KKT could be inviable.

Typically, the methods generate an infinite sequence of approximate solutions

which for a finite number of steps (or better - time) converges to an optimal (at least

one of the optimal) solution .

x0

x1
x2

x3x4

def GeneralScheme(x, epsilon):

 while not StopCriterion(x, epsilon):

 OracleResponse = RequestOracle(x)

 x = NextPoint(x, OracleResponse)

 return x

General formulation
min
x∈Rn

f(x)

s.t. gi(x) ≤0, i = 1, … , m

hj(x) =0, j = 1, … , k

•

•

Iterative methods

{xt},

x∗

https://fmin.xyz/docs/theory/Optimality/
https://fmin.xyz/docs/theory/Convex_optimization_problem/

f(xk), f’(x k), f’’(xk)

ORACLE

Black - box

xk

In general, optimization problems are unsolvable. ¯\(ツ)/¯

Consider the following simple optimization problem of a function over unit cube:

We assume, that the objective function is Lipschitz continuous on :

with some constant (Lipschitz constant). Here - the -dimensional unit cube

Oracle conception

Complexity

Challenges

Unsolvability

min
x∈Rn

f(x)

s.t. x ∈ Bn

f(⋅) : Rn → R Bn

|f(x) − f(y)| ≤ L∥x − y∥∞∀x, y ∈ Bn,

L Bn n

Bn = {x ∈ Rn ∣ 0 ≤ xi ≤ 1, i = 1, … , n}

Our goal is to find such for some positive . Here is the global

minima of the problem. Uniform grid with points on each dimension guarantees at

least this quality:

which means, that

Our goal is to find the for some . So, we need to sample points, since we

need to measure function in points. Doesn’t look scary, but if we’ll take

, computations on the modern personal computers will take

31,250,000 years.

Argument closeness:

Function value closeness:

Closeness to a critical point

But and are unknown!

Sometimes, we can use the trick:

Note: it’s better to use relative changing of these values, i.e. .

~x : |f(~x) − f ∗| ≤ ε ε f ∗

p

∥~x − x∗∥∞ ≤ 1
2p

,

|f(~x) − f(x∗)| ≤ L

2p

p ε (L
2ε

)n

pn

L = 2, n = 11, ε = 0.01

Stopping rules
•

∥xk − x∗∥2 < ε

•

∥fk − f ∗∥2 < ε

•

∥f ′(xk)∥2 < ε

x∗ f ∗ = f(x∗)

∥xk+1 − xk∥ = ∥xk+1 − xk + x∗ − x∗∥ ≤ ∥xk+1 − x∗∥ + ∥xk − x∗∥ ≤ 2ε

∥xk+1 − xk∥2

∥xk∥2

Local nature of the methods

https://fmin.xyz/

Line search

Zero order methods

First order methods

Adaptive metric methods

LP and simplex algorithm

Automatic differentiation

TABLE OF CONTENTS

•

•

•

•

•

•

https://fmin.xyz/docs/methods/line_search/line_search/
https://fmin.xyz/docs/methods/zom/zom/
https://fmin.xyz/docs/methods/fom/fom/
https://fmin.xyz/docs/methods/adaptive_metrics/adaptive_metric/
https://fmin.xyz/docs/methods/Simplex/
https://fmin.xyz/docs/methods/Autograd/

Theory / Rates of convergence

In order to compare perfomance of algorithms we need to define a terminology for

different types of convergence. Let be a sequence in that converges to some

point

We can define the linear convergence in a two different forms:

for all sufficiently large . Here and . This means that the

distance to the solution decreases at each iteration by at least a constant factor

bounded away from . Note, that sometimes this type of convergence is also called

exponential or geometric.

The convergence is said to be superlinear if:

where or , . Note, that superlinear convergence is also

linear convergence (one can even say, that it is linear convergence with).

where and . Note, that sublinear convergence means, that the

sequence is converging slower, than any geometric progression.

where and .

Speed of convergence

{xk} Rn

x∗

Linear convergence

∥xk+1 − x∗∥2 ≤ Cqk or ∥xk+1 − x∗∥2 ≤ q∥xk − x∗∥2,

k q ∈ (0, 1) 0 < C < ∞
x∗

1

Superlinear convergence

∥xk+1 − x∗∥2 ≤ Cqk2
or ∥xk+1 − x∗∥2 ≤ Ck∥xk − x∗∥2,

q ∈ (0, 1) 0 < Ck < ∞ Ck → 0
q = 0

Sublinear convergence

∥xk+1 − x∗∥2 ≤ Ckq,

q < 0 0 < C < ∞

Quadratic convergence

∥xk+1 − x∗∥2 ≤ Cq2k

or ∥xk+1 − x∗∥2 ≤ C∥xk − x∗∥2
2,

q ∈ (0, 1) 0 < C < ∞

https://fmin.xyz/
https://fmin.xyz/docs/theory/Theory/

Quasi-Newton methods for unconstrained optimization typically converge superlinearly,

whereas Newton’s method converges quadratically under appropriate assumptions. In

contrast, steepest descent algorithms converge only at a linear rate, and when the

problem is ill-conditioned the convergence constant is close to .

Let be a sequence of non-negative numbers, converging to zero, and let

If , then has linear convergence with constant .

In particular, if , then has superlinear convergence.

If , then has sublinear convergence.

The case is impossible.

Let be a sequence of strictly positive numbers converging to zero. Let

q 1

How to determine convergence type

Root test
{rk}∞

k=m

q = lim
k→∞

sup
k

r1/k
k

• 0 ≤ q < 1 {rk}∞
k=m

q

• q = 0 {rk}∞
k=m

• q = 1 {rk}∞
k=m

• q > 1

Ratio test
{rk}∞

k=m

q = lim
k→∞

rk+1

rk

If there exists and , then has linear convergence with constant

.

In particular, if , then has superlinear convergence.

If does not exist, but , then has linear

convergence with a constant not exceeding .

If , then has sublinear convergence.

The case is impossible.

In all other cases (i.e., when) we cannot

claim anything concrete about the convergence rate .

Code for convergence plots - Open in ColabOpen in Colab

CMC seminars (ru)

Numerical Optimization by J.Nocedal and S.J.Wright

• q 0 ≤ q < 1 {rk}∞
k=m

q

• q = 0 {rk}∞
k=m

• q q = lim
k→∞

supk

rk+1

rk

< 1 {rk}∞
k=m

q

• lim
k→∞

infk
rk+1

rk

= 1 {rk}∞
k=m

• lim
k→∞

infk
rk+1

rk

> 1

• lim
k→∞

infk
rk+1

rk

< 1 ≤ lim
k→∞

supk

rk+1

rk

{rk}∞
k=m

References
•

•

•

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Convergence.ipynb
http://www.machinelearning.ru/wiki/images/9/9a/MOMO18_Extra1.pdf

Theory / Matrix calculus

We will treat all vectors as column vectors by default. The space of real vectors of

length is denoted by , while the space of real-valued matrices is denoted

by .

The standard inner product between vectors and from is given by

Here and are the scalar -th components of corresponding vectors.

The standard inner product between matrices and from is given by

The determinant and trace can be expressed in terms of the eigenvalues

Don’t forget about the cyclic property of a trace for a square matrices :

The largest and smallest eigenvalues satisfy

and consequently (Rayleigh quotient):

A matrix (set of square symmetric matrices of dimension) is called positive

(semi)definite if for all . We denote this as

Useful definitions and notations

n Rn m × n

Rm×n

Basic linear algebra background
x y Rn

⟨x, y⟩ = x⊤y =
n∑

i=1

xiyi = y⊤x = ⟨y, x⟩

xi yi i

X Y Rm×n

⟨X, Y ⟩ = tr(X ⊤Y) =
m∑

i=1

n∑
j=1

XijYij = tr(Y ⊤X) = ⟨Y , X⟩

detA =
n∏

i=1

λi, trA =
n∑

i=1

λi

A, B, C, D

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

λmin(A) = inf
x≠0

x⊤Ax

x⊤x
, λmax(A) = sup

x≠0

x⊤Ax

x⊤x

∀x ∈ Rn

λmin(A)x⊤x ≤ x⊤Ax ≤ λmax(A)x⊤x

A ∈ Sn n

x ≠ 0(for all x) : x⊤Ax > (≥)0

https://fmin.xyz/docs/theory/Theory/

.

The condition number of a nonsingular matrix is defined as

Let be a matrix of size , and be a matrix of size , and let the product

 be:

then is a matrix, with element given by:

Let be a matrix of shape , and be vector, then the -th component of

the product:

is given by:

Finally, just to remind:

 (but if and are commuting matrices, which means that

,)

Let , then vector, which contains all first order partial derivatives:

A ≻ (⪰)0

κ(A) = ∥A∥∥A−1∥

Matrix and vector multiplication
A m × n B n × p

AB

C = AB

C m × p (i, j)

cij =
n∑

k=1

aikbkj

A m × n x n × 1 i

z = Ax

zi =
n∑

k=1

aikxk

• C = AB C ⊤ = B⊤A⊤

• AB ≠ BA

• eA =
∞
∑
k=0

1
k! Ak

• eA+B ≠ eAeB A B

AB = BA eA+B = eAeB

• ⟨x, Ay⟩ = ⟨A⊤x, y⟩

Gradient
f(x) : Rn → R ⎜ ⎟

named gradient of . This vector indicates the direction of steepest ascent. Thus,

vector means the direction of the steepest descent of the function in the

point. Moreover, the gradient vector is always orthogonal to the contour line in the

point.

Let , then matrix, containing all the second order partial derivatives:

In fact, Hessian could be a tensor in such a way: is just 3d tensor,

every slice is just hessian of corresponding scalar function

.

The extension of the gradient of multidimensional is the following

matrix:

∇f(x) =
df

dx
=

⎛⎜⎝ ∂f

∂x1

∂f

∂x2

⋮
∂f

∂xn

⎞⎟⎠f(x)
−∇f(x)

Hessian
f(x) : Rn → R

f ′′(x) = ∂ 2f

∂xi∂xj

=

⎛⎜⎝ ∂ 2f

∂x1∂x1

∂ 2f

∂x1∂x2
… ∂ 2f

∂x1∂xn

∂ 2f

∂x2∂x1

∂ 2f

∂x2∂x2
… ∂ 2f

∂x2∂xn

⋮ ⋮ ⋱ ⋮
∂ 2f

∂xn∂x1

∂ 2f

∂xn∂x2
… ∂ 2f

∂xn∂xn

⎞⎟⎠(f(x) : Rn → Rm)

(H (f1(x)), H (f2(x)), … , H (fm(x)))

Jacobian
f(x) : Rn → Rm

f ′(x) =
df

dxT
=

⎛⎜⎝ ∂f1
∂x1

∂f1
∂x2

… ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

… ∂f2
∂xn

⋮ ⋮ ⋱ ⋮
∂fm

∂x1

∂fm

∂x2
… ∂fm

∂xn

⎞⎟⎠Summary

X Y G Name

 (derivative)

 (gradient)

 (jacobian)

The basic idea of naive approach is to reduce matrix/vector derivatives to the well-

known scalar derivatives.

Matrix notation of a function

Scalar notation of a function

Matrix notation of a gradient

Simple derivative

One of the most important practical tricks here is to separate indices of sum () and

⎜ ⎟⎜ ⎟⎜ ⎟f(x) : X → Y ;
∂f(x)

∂x
∈ G

R R R f ′(x)

Rn R R! ∂f

∂xi

Rn Rm Rm×n
∂fi

∂xj

Rm×n R Rm×n
∂f

∂xij

General concept

Naive approach

i

partial derivatives (). Ignoring this simple rule tends to produce mistakes.

The guru approach implies formulating a set of simple rules, which allows you to

calculate derivatives just like in a scalar case. It might be convenient to use the

differential notation here.

After obtaining the differential notation of we can retrieve the gradient using

following formula:

Then, if we have differential of the above form and we need to calculate the second

derivative of the matrix/vector function, we treat “old” as the constant , then

calculate

Let and be the constant matrices, while and are the variables (or matrix

functions).

⎜ ⎟⎜ ⎟
k

Differential approach

Differentials
df

df(x) = ⟨∇f(x), dx⟩

dx dx1

d(df) = d2f(x)

d2f(x) = ⟨∇2f(x)dx1, dx⟩ = ⟨Hf(x)dx1, dx⟩

Properties

A B X Y

• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B

• d(X + Y) = dX + dY

• d(X ⊤) = (dX)⊤

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩
•

d (X

ϕ
) =

ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X −⊤, dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) =

df

dg
⋅ dg(x)

• H = (J(∇f))T

https://fmin.xyz/

Convex Optimization book by S. Boyd and L. Vandenberghe - Appendix A.

Mathematical background.

Numerical Optimization by J. Nocedal and S. J. Wright. - Background Material.

Matrix decompositions Cheat Sheet.

Good introduction

The Matrix Cookbook

MSU seminars (Rus.)

Online tool for analytic expression of a derivative.

Determinant derivative

• d(X −1) = −X −1(dX)X −1

References
•

•

•

•

•

•

•

•

https://web.stanford.edu/~boyd/cvxbook/
https://fmin.xyz/docs/theory/Matrix_calculus/assets/files/NumericalOptimization.pdf
https://nla.skoltech.ru/lectures/files/decompositions.pdf
https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
http://www.machinelearning.ru/wiki/images/a/ab/MOMO18_Seminar1.pdf
http://www.matrixcalculus.org/
https://charlesfrye.github.io/math/2019/01/25/frechet-determinant.html

