
Applications / Principal component analysis

Imagine, that you have a dataset of points. Your goal is to choose orthogonal axes, that

describe your data the most informative way. To be precise, we choose first axis in such

a way, that maximize the variance (expressiveness) of the projected data. All the

following axes have to be orthogonal to the previously chosen ones, while satisfy

largest possible variance of the projections.

Let’s take a look at the simple 2d data. We have a set of blue points on the plane. We

can easily see that the projections on the first axis (red dots) have maximum variance at

the final position of the animation. The second (and the last) axis should be orthogonal

to the previous one.

source

This idea could be used in a variety of ways. For example, it might happen, that

projection of complex data on the principal plane (only 2 components) bring you

enough intuition for clustering. The picture below plots projection of the labeled

dataset onto the first to principal components (PCs), we can clearly see, that only two

vectors (these PCs) would be enogh to differ Finnish people from Italian in particular

dataset (celiac disease (Dubois et al. 2010)) source

The first component should be defined in order to maximize variance. Suppose, we’ve

already normalized the data, i.e. , then sample variance will become the sum

Intuition

Problem

∑
i

ai = 0

https://fmin.xyz/docs/applications/Applications/
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://privefl.github.io/bigsnpr/articles/how-to-PCA.html

of all squared projections of data points to our vector , which implies the following

optimization problem:

or

since we are looking for the unit vector, we can reformulate the problem:

It is known, that for positive semidefinite matrix such vector is nothing else, but

eigenvector of , which corresponds to the largest eigenvalue. The following

components will give you the same results (eigenvectors).

So, we can conclude, that the following mapping:

describes the projection of data onto the principal components, where contains

first (by the size of eigenvalues) eigenvectors of .

Now we’ll briefly derive how SVD decomposition could lead us to the PCA.

Firstly, we write down SVD decomposition of our matrix:

and to its transpose:

Then, consider matrix :

w(1)

w(1) = arg max
∥w∥=1

{∑
i

(a⊤
(i) ⋅ w)2}

w(1) = arg max
∥w∥=1

{∥Aw∥2} = arg max
∥w∥=1

{w⊤A⊤Aw}

w(1) = arg max { w⊤A⊤Aw
w⊤w

}
A⊤A

A⊤A

Π
n×k

= A
n×d

⋅ W
d×k

k W

k A⊤A

A = UΣW ⊤

A⊤ = (UΣW ⊤)⊤

= (W ⊤)⊤Σ⊤U ⊤

= WΣ⊤U ⊤

= WΣU ⊤

AA⊤

https://en.wikipedia.org/wiki/Rayleigh_quotient

Which corresponds to the eigendecomposition of matrix , where stands for the

matrix of eigenvectors of , while contains eigenvalues of .

At the end:

The latter formula provide us with easy way to compute PCA via SVD with any number

of principal components:

Consider the classical Iris dataset

A⊤A = (WΣU ⊤)(UΣV ⊤)
= WΣIΣW ⊤

= WΣΣW ⊤

= WΣ2W ⊤

A⊤A W

A⊤A Σ2 A⊤A

Π = A ⋅ W =
= UΣW ⊤W = UΣ

Πr = UrΣr

Examples

!

 Iris dataset

https://fmin.xyz/

source We have the dataset matrix

Petal
Samples

(instances,observations)

1

2

Sepal
length

5.1

4.9

Sepal
width

3.5

3.0

Petal

length

1.4

1.4

Petal

width

0.2

0.2

Class
label

Setosa

Setosa

50 6.4 3.5 4.5 1.2 Versicolor

150 5.9 3.0 5.0 1.8 Virginica

Features

(attributes,measurements,dimensions)

Classlabels

(targets)

A ∈ R150×4

https://sebastianraschka.com/Articles/2015_pca_in_3_steps.html

Open in ColabOpen in Colab

Wikipedia

Blog post

Blog post

P
C
2

3

2

setosa

versicolor

virginica

0

-1

-2

-3 -2 2
PC1

Code
OpeninColab

Related materials
•

•

•

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/PCA.ipynb
https://en.wikipedia.org/wiki/Principal_component_analysis
https://ethen8181.github.io/machine-learning/dim_reduct/svd.html
https://sebastianraschka.com/Articles/2015_pca_in_3_steps.html

Theory / Matrix calculus

We will treat all vectors as column vectors by default. The space of real vectors of

length is denoted by , while the space of real-valued matrices is denoted

by .

The standard inner product between vectors and from is given by

Here and are the scalar -th components of corresponding vectors.

The standard inner product between matrices and from is given by

The determinant and trace can be expressed in terms of the eigenvalues

Don’t forget about the cyclic property of a trace for a square matrices :

The largest and smallest eigenvalues satisfy

and consequently (Rayleigh quotient):

A matrix (set of square symmetric matrices of dimension) is called positive

(semi)definite if for all . We denote this as

Useful definitions and notations

n Rn m × n

Rm×n

Basic linear algebra background
x y Rn

⟨x, y⟩ = x⊤y =
n∑

i=1

xiyi = y⊤x = ⟨y, x⟩

xi yi i

X Y Rm×n

⟨X, Y ⟩ = tr(X ⊤Y) =
m∑

i=1

n∑
j=1

XijYij = tr(Y ⊤X) = ⟨Y , X⟩

detA =
n∏

i=1

λi, trA =
n∑

i=1

λi

A, B, C, D

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

λmin(A) = inf
x≠0

x⊤Ax

x⊤x
, λmax(A) = sup

x≠0

x⊤Ax

x⊤x

∀x ∈ Rn

λmin(A)x⊤x ≤ x⊤Ax ≤ λmax(A)x⊤x

A ∈ Sn n

x ≠ 0(for all x) : x⊤Ax > (≥)0

https://fmin.xyz/
https://fmin.xyz/docs/theory/Theory/

.

The condition number of a nonsingular matrix is defined as

Let be a matrix of size , and be a matrix of size , and let the product

 be:

then is a matrix, with element given by:

Let be a matrix of shape , and be vector, then the -th component of

the product:

is given by:

Finally, just to remind:

 (but if and are commuting matrices, which means that

,)

Let , then vector, which contains all first order partial derivatives:

A ≻ (⪰)0

κ(A) = ∥A∥∥A−1∥

Matrix and vector multiplication
A m × n B n × p

AB

C = AB

C m × p (i, j)

cij =
n∑

k=1

aikbkj

A m × n x n × 1 i

z = Ax

zi =
n∑

k=1

aikxk

• C = AB C ⊤ = B⊤A⊤

• AB ≠ BA

• eA =
∞
∑
k=0

1
k! Ak

• eA+B ≠ eAeB A B

AB = BA eA+B = eAeB

• ⟨x, Ay⟩ = ⟨A⊤x, y⟩

Gradient
f(x) : Rn → R ⎜ ⎟

named gradient of . This vector indicates the direction of steepest ascent. Thus,

vector means the direction of the steepest descent of the function in the

point. Moreover, the gradient vector is always orthogonal to the contour line in the

point.

Let , then matrix, containing all the second order partial derivatives:

In fact, Hessian could be a tensor in such a way: is just 3d tensor,

every slice is just hessian of corresponding scalar function

.

The extension of the gradient of multidimensional is the following

matrix:

∇f(x) =
df

dx
=

⎛⎜⎝ ∂f

∂x1

∂f

∂x2

⋮
∂f

∂xn

⎞⎟⎠f(x)
−∇f(x)

Hessian
f(x) : Rn → R

f ′′(x) = ∂ 2f

∂xi∂xj

=

⎛⎜⎝ ∂ 2f

∂x1∂x1

∂ 2f

∂x1∂x2
… ∂ 2f

∂x1∂xn

∂ 2f

∂x2∂x1

∂ 2f

∂x2∂x2
… ∂ 2f

∂x2∂xn

⋮ ⋮ ⋱ ⋮
∂ 2f

∂xn∂x1

∂ 2f

∂xn∂x2
… ∂ 2f

∂xn∂xn

⎞⎟⎠(f(x) : Rn → Rm)

(H (f1(x)), H (f2(x)), … , H (fm(x)))

Jacobian
f(x) : Rn → Rm

f ′(x) =
df

dxT
=

⎛⎜⎝ ∂f1
∂x1

∂f1
∂x2

… ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

… ∂f2
∂xn

⋮ ⋮ ⋱ ⋮
∂fm

∂x1

∂fm

∂x2
… ∂fm

∂xn

⎞⎟⎠Summary

X Y G Name

 (derivative)

 (gradient)

 (jacobian)

The basic idea of naive approach is to reduce matrix/vector derivatives to the well-

known scalar derivatives.

Matrix notation of a function

Scalar notation of a function

Matrix notation of a gradient

Simple derivative

One of the most important practical tricks here is to separate indices of sum () and

⎜ ⎟⎜ ⎟⎜ ⎟f(x) : X → Y ;
∂f(x)

∂x
∈ G

R R R f ′(x)

Rn R R! ∂f

∂xi

Rn Rm Rm×n
∂fi

∂xj

Rm×n R Rm×n
∂f

∂xij

General concept

Naive approach

i

partial derivatives (). Ignoring this simple rule tends to produce mistakes.

The guru approach implies formulating a set of simple rules, which allows you to

calculate derivatives just like in a scalar case. It might be convenient to use the

differential notation here.

After obtaining the differential notation of we can retrieve the gradient using

following formula:

Then, if we have differential of the above form and we need to calculate the second

derivative of the matrix/vector function, we treat “old” as the constant , then

calculate

Let and be the constant matrices, while and are the variables (or matrix

functions).

⎜ ⎟⎜ ⎟
k

Differential approach

Differentials
df

df(x) = ⟨∇f(x), dx⟩

dx dx1

d(df) = d2f(x)

d2f(x) = ⟨∇2f(x)dx1, dx⟩ = ⟨Hf(x)dx1, dx⟩

Properties

A B X Y

• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B

• d(X + Y) = dX + dY

• d(X ⊤) = (dX)⊤

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩
•

d (X

ϕ
) =

ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X −⊤, dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) =

df

dg
⋅ dg(x)

• H = (J(∇f))T

Convex Optimization book by S. Boyd and L. Vandenberghe - Appendix A.

Mathematical background.

Numerical Optimization by J. Nocedal and S. J. Wright. - Background Material.

Matrix decompositions Cheat Sheet.

Good introduction

The Matrix Cookbook

MSU seminars (Rus.)

Online tool for analytic expression of a derivative.

Determinant derivative

• d(X −1) = −X −1(dX)X −1

References
•

•

•

•

•

•

•

•

https://web.stanford.edu/~boyd/cvxbook/
https://fmin.xyz/docs/theory/Matrix_calculus/assets/files/NumericalOptimization.pdf
https://nla.skoltech.ru/lectures/files/decompositions.pdf
https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
http://www.machinelearning.ru/wiki/images/a/ab/MOMO18_Seminar1.pdf
http://www.matrixcalculus.org/
https://charlesfrye.github.io/math/2019/01/25/frechet-determinant.html

Methods / Automatic differentiation

Automatic differentiation is a scheme, that allows you to compute a value of gradient of

function with a cost of computing function itself only twice.

We will illustrate some important matrix calculus facts for specific cases

Suppose, we have the following functions and . Then

The simplest example:

Now, we’ll consider :

But if we will add another dimension , than the -th output of will be:

Idea

DiFFERENTIATION
STABLE

SYMBOLiC MATI

SLOW

•NUMERICAL

FAST
MANUAL

(imprAcTicAL
UNSTABLE

Chain rule

Univariate chain rule

R : R → R, L : R → R W ∈ R

∂R

∂W
= ∂R

∂L

∂L

∂W

Multivariate chain rule

∂
∂t

f(x1(t), x2(t)) = ∂f

∂x1

∂x1

∂t
+ ∂f

∂x2

∂x2

∂t

f : Rn → R

∂
∂t

f(x1(t), … , xn(t)) = ∂f

∂x1

∂x1

∂t
+ … + ∂f

∂xn

∂xn

∂t

f : Rn → Rm j f

https://fmin.xyz/
https://fmin.xyz/docs/methods/Methods/

where matrix is the jacobian of the . Hence, we could write it in a vector

way:

The whole idea came from the applying chain rule to the computation graph of primitive

operations

All frameworks for automatic differentiation construct (implicitly or explicitly)

computation graph. In deep learning we typically want to compute the derivatives of

∂
∂t

fj(x1(t), … , xn(t)) =
n∑

i=1

∂fj

∂xi

∂xi

∂t
=

n∑
i=1

Jji
∂xi

∂t
,

J ∈ Rm×n f

∂f

∂t
= J

∂x

∂t
⟺ (∂f

∂t
)⊤

= (∂x

∂t
)⊤

J ⊤

Backpropagation

L = L (y (z(w, x, b)), t)

z = wx + b
∂z

∂w
= x,

∂z

∂x
= w,

∂z

∂b
= 0

y = σ(z) ∂y

∂z
= σ′(z)

L = 1
2

(y − t)2 ∂L

∂y
= y − t,

∂L

∂t
= t − y

the loss function w.r.t. each intermediate parameters in order to tune them via

gradient descent. For this purpose it is convenient to use the following notation:

Let be a topological ordering of the computation graph (i.e. parents come

before children). denotes the variable we’re trying to compute derivatives of (e.g.

loss).

For :

Compute as a function of its parents.

For :

Compute derivatives

Note, that term is coming from the children of , while is already precomputed

effectively.

L

vi = ∂L

∂vi

–

v1, . . . , vN

vN

Forward pass:

• i = 1, … , N

• vi

Backward pass:

• vN = 1–

• i = N − 1, … , 1

•
vi = ∑

j∈Children(vi)
vj

∂vj

∂vi

––

vj
–vi
–∂vj

∂vi

Univariate logistic least squares regression

Forward pass Backward pass

The reason why it works so fast in practice is that the Jacobian of the operations are

already developed in effective manner in automatic differentiation frameworks.

Typically, we even do not construct or store the full Jacobian, doing matvec directly

instead.

See the examples of Vector-Jacobian Products from autodidact library:

defvjp(anp.add, lambda g, ans, x, y : unbroadcast(x, g),

 lambda g, ans, x, y : unbroadcast(y, g))

defvjp(anp.multiply, lambda g, ans, x, y : unbroadcast(x, y * g),

 lambda g, ans, x, y : unbroadcast(y, x * g))

defvjp(anp.subtract, lambda g, ans, x, y : unbroadcast(x, g),

 lambda g, ans, x, y : unbroadcast(y, -g))

defvjp(anp.divide, lambda g, ans, x, y : unbroadcast(x, g / y),

 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

defvjp(anp.true_divide, lambda g, ans, x, y : unbroadcast(x, g / y),

Jacobian vector product

Example: element-wise exponent

y = exp (z) J = diag(exp(z)) –z = –yJ

 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Interesting, that the similar idea could be used to compute Hessian-vector products,

which is essential for second order optimization or conjugate gradient methods. For a

scalar-valued function with continuous second derivatives (so that the

Hessian matrix is symmetric), the Hessian at a point is written as . A

Hessian-vector product function is then able to evaluate

for any vector .

The trick is not to instantiate the full Hessian matrix: if is large, perhaps in the millions

or billions in the context of neural networks, then that might be impossible to store.

Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an

efficient Hessian-vector product function. We just have to use the identity

where is a new vector-valued function that dots the gradient of at

 with the vector . Notice that we’re only ever differentiating scalar-valued functions

of vector-valued arguments, which is exactly where we know grad is efficient.

import jax.numpy as jnp

def hvp(f, x, v):

 return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Open in ColabOpen in Colab

Hessian vector product

f : Rn → R
x ∈ Rn ∂ 2f(x)

v ↦ ∂ 2f(x) ⋅ v

v ∈ Rn

n

∂ 2f(x)v = ∂[x ↦ ∂f(x) ⋅ v] = ∂g(x),

g(x) = ∂f(x) ⋅ v f

x v

Code

Materials

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd.ipynb

Autodidact - a pedagogical implementation of Autograd

CSC321 Lecture 6

CSC321 Lecture 10

Why you should understand backpropagation :)

JAX autodiff cookbook

Materials from CS207: Systems Development for Computational Science course

with very intuitive explanation.

•

•

•

•

•

•

https://github.com/mattjj/autodidact
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec06.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://harvard-iacs.github.io/2019-CS207/lectures/lecture10/notebook/

