
Methods / Automatic differentiation

Automatic differentiation is a scheme, that allows you to compute a value of gradient of

function with a cost of computing function itself only twice.

We will illustrate some important matrix calculus facts for specific cases

Suppose, we have the following functions and . Then

The simplest example:

Now, we’ll consider :

But if we will add another dimension , than the -th output of will be:

Idea

DiFFERENTIATION
STABLE

SYMBOLiC MATI

SLOW

•NUMERICAL

FAST
MANUAL

(imprAcTicAL
UNSTABLE

Chain rule

Univariate chain rule

R : R → R, L : R → R W ∈ R

∂R

∂W
= ∂R

∂L

∂L

∂W

Multivariate chain rule

∂
∂t

f(x1(t), x2(t)) = ∂f

∂x1

∂x1

∂t
+ ∂f

∂x2

∂x2

∂t

f : Rn → R

∂
∂t

f(x1(t), … , xn(t)) = ∂f

∂x1

∂x1

∂t
+ … + ∂f

∂xn

∂xn

∂t

f : Rn → Rm j f

https://fmin.xyz/
https://fmin.xyz/docs/methods/Methods/

where matrix is the jacobian of the . Hence, we could write it in a vector

way:

The whole idea came from the applying chain rule to the computation graph of primitive

operations

All frameworks for automatic differentiation construct (implicitly or explicitly)

computation graph. In deep learning we typically want to compute the derivatives of

∂
∂t

fj(x1(t), … , xn(t)) =
n∑

i=1

∂fj

∂xi

∂xi

∂t
=

n∑
i=1

Jji
∂xi

∂t
,

J ∈ Rm×n f

∂f

∂t
= J

∂x

∂t
⟺ (∂f

∂t
)⊤

= (∂x

∂t
)⊤

J ⊤

Backpropagation

L = L (y (z(w, x, b)), t)

z = wx + b
∂z

∂w
= x,

∂z

∂x
= w,

∂z

∂b
= 0

y = σ(z) ∂y

∂z
= σ′(z)

L = 1
2

(y − t)2 ∂L

∂y
= y − t,

∂L

∂t
= t − y

the loss function w.r.t. each intermediate parameters in order to tune them via

gradient descent. For this purpose it is convenient to use the following notation:

Let be a topological ordering of the computation graph (i.e. parents come

before children). denotes the variable we’re trying to compute derivatives of (e.g.

loss).

For :

Compute as a function of its parents.

For :

Compute derivatives

Note, that term is coming from the children of , while is already precomputed

effectively.

L

vi = ∂L

∂vi

–

v1, . . . , vN

vN

Forward pass:

• i = 1, … , N

• vi

Backward pass:

• vN = 1–

• i = N − 1, … , 1

•
vi = ∑

j∈Children(vi)
vj

∂vj

∂vi

––

vj
–vi
–∂vj

∂vi

Univariate logistic least squares regression

Forward pass Backward pass

The reason why it works so fast in practice is that the Jacobian of the operations are

already developed in effective manner in automatic differentiation frameworks.

Typically, we even do not construct or store the full Jacobian, doing matvec directly

instead.

See the examples of Vector-Jacobian Products from autodidact library:

defvjp(anp.add, lambda g, ans, x, y : unbroadcast(x, g),

 lambda g, ans, x, y : unbroadcast(y, g))

defvjp(anp.multiply, lambda g, ans, x, y : unbroadcast(x, y * g),

 lambda g, ans, x, y : unbroadcast(y, x * g))

defvjp(anp.subtract, lambda g, ans, x, y : unbroadcast(x, g),

 lambda g, ans, x, y : unbroadcast(y, -g))

defvjp(anp.divide, lambda g, ans, x, y : unbroadcast(x, g / y),

 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

defvjp(anp.true_divide, lambda g, ans, x, y : unbroadcast(x, g / y),

Jacobian vector product

Example: element-wise exponent

y = exp (z) J = diag(exp(z)) –z = –yJ

 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Interesting, that the similar idea could be used to compute Hessian-vector products,

which is essential for second order optimization or conjugate gradient methods. For a

scalar-valued function with continuous second derivatives (so that the

Hessian matrix is symmetric), the Hessian at a point is written as . A

Hessian-vector product function is then able to evaluate

for any vector .

The trick is not to instantiate the full Hessian matrix: if is large, perhaps in the millions

or billions in the context of neural networks, then that might be impossible to store.

Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an

efficient Hessian-vector product function. We just have to use the identity

where is a new vector-valued function that dots the gradient of at

 with the vector . Notice that we’re only ever differentiating scalar-valued functions

of vector-valued arguments, which is exactly where we know grad is efficient.

import jax.numpy as jnp

def hvp(f, x, v):

 return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Open in ColabOpen in Colab

Hessian vector product

f : Rn → R
x ∈ Rn ∂ 2f(x)

v ↦ ∂ 2f(x) ⋅ v

v ∈ Rn

n

∂ 2f(x)v = ∂[x ↦ ∂f(x) ⋅ v] = ∂g(x),

g(x) = ∂f(x) ⋅ v f

x v

Code

Materials

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd.ipynb

Autodidact - a pedagogical implementation of Autograd

CSC321 Lecture 6

CSC321 Lecture 10

Why you should understand backpropagation :)

JAX autodiff cookbook

Materials from CS207: Systems Development for Computational Science course

with very intuitive explanation.

•

•

•

•

•

•

https://github.com/mattjj/autodidact
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec06.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://harvard-iacs.github.io/2019-CS207/lectures/lecture10/notebook/

Theory / Convex sets / Convex set

Suppose are two points in . Then the line segment between them is defined

as follows:

x1

x2

θ = 1

θ = 0

θ = 0.6

The set is called convex if for any from the line segment between them also

lies in , i.e.

Any affine set

Ray

Line segment

Line segment
x1, x2 R!

x = θx1 + (1 − θ)x2, θ ∈ [0, 1]

Convex set
S x1, x2 S

S

∀θ ∈ [0, 1], ∀x1, x2 ∈ S : θx1 + (1 − θ)x2 ∈ S

Examples:
•

•

•

https://fmin.xyz/docs/theory/Theory/
https://fmin.xyz/docs/exercises/convex_sets/

BRO BRO

BRO

NOT BRO

NOT BRO BRO

Let , then the point is called the convex

combination of points if .

Related definitions

Convex combination
x1, x2, … , xk ∈ S θ1x1 + θ2x2 + … + θkxk

x1, x2, … , xk

k

∑
i=1

θi = 1, θi ≥ 0

The set of all convex combinations of points from is called the convex hull of the set

.

The set is the smallest convex set containing .

The set is convex if and only if .

Examples:

BRO BRO

BRO

BRO

BRO BRO

In practice it is very important to understand whether a specific set is convex or not.

Two approaches are used for this depending on the context.

By definition.

Show that is derived from simple convex sets using operations that preserve

convexity.

Convex hull
S

S

conv(S) = { k∑
i=1

θixi ∣ xi ∈ S,
k∑

i=1

θi = 1, θi ≥ 0}
• conv(S) S

• S S = conv(S)

Finding convexity

•

• S

By definition

Let there be 2 convex sets , let the set

Take two points from : and prove that the

segment between them also belongs to

If the desired intersection is empty or contains one point, the property is proved by

definition. Otherwise, take 2 points and a segment between them. These points must lie

in all intersecting sets, and since they are all convex, the segment between them lies in

all sets and, therefore, in their intersection.

Examples of affine functions: extension, projection, transposition, set of solutions of

linear matrix inequality . Here are

symmetric matrices .

Note also that the prototype of the convex set under affine mapping is also convex.

x1, x2 ∈ S, 0 ≤ θ ≤ 1 → θx1 + (1 − θ)x2 ∈ S

Preserving convexity

The linear combination of convex sets is convex

Sx, Sy

S = {s ∣ s = c1x + c2y, x ∈ Sx, y ∈ Sy, c1, c2 ∈ R}

S s1 = c1x1 + c2y1, s2 = c1x2 + c2y2

θs1 + (1 − θ)s2, θ ∈ [0, 1] S

θs1 + (1 − θ)s2

θ(c1x1 + c2y1) + (1 − θ)(c1x2 + c2y2)

c1(θx1 + (1 − θ)x2) + c2(θy1 + (1 − θ)y2)

c1x + c2y ∈ S

The intersection of any (!) number of convex sets is convex

The image of the convex set under affine mapping is convex

S ⊆ Rn convex → f(S) = {f(x) ∣ x ∈ S} convex (f(x) = Ax + b)

{x ∣ x1A1 + … + xmAm ⪯ B} Ai, B ∈ Sp

p × p

S ⊆ Rm convex → f −1(S) = {x ∈ Rn ∣ f(x) ∈ S} convex (f(x) = Ax + b)

https://fmin.xyz/

Theory / Convex function

The function , which is defined on the convex set , is called convex on

, if:

for any and .

If above inequality holds as strict inequality and , then function is

called strictly convex on .

x1

x2 Convex
Non Convex

The sum of the largest coordinates

Convex function
f(x) S ⊆ Rn

S

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

x1, x2 ∈ S 0 ≤ λ ≤ 1
x1 ≠ x2 0 < λ < 1

S

Examples
• f(x) = xp, p > 1, x ∈ R+

• f(x) = ∥x∥p, p > 1, x ∈ Rn

• f(x) = ecx, c ∈ R, x ∈ R
• f(x) = − ln x, x ∈ R++

• f(x) = x ln x, x ∈ R++

• k f(x) = x(1) + … + x(k), x ∈ Rn

• f(X) = λmax(X), X = X T

https://fmin.xyz/docs/theory/Theory/

For the function , defined on , the following set:

is called epigraph of the function .

x1

x2

Epi f(x)
f(x)

For the function , defined on , the following set:

is called sublevel set or Lebesgue set of the function .

• f(X) = − log det X, X ∈ S n
++

Epigraph
f(x) S ⊆ Rn

epi f = {[x, µ] ∈ S × R : f(x) ≤ µ}

f(x)

Sublevel set
f(x) S ⊆ Rn

Lβ = {x ∈ S : f(x) ≤ β}

f(x)

x

f(x)

0

Sublevel set

β

L β

The differentiable function defined on the convex set is convex if and

only if :

Let , then the criterion will become more tractable:

Criteria of convexity

First order differential criterion of convexity
f(x) S ⊆ Rn

∀x, y ∈ S

f(y) ≥ f(x) + ∇f T (x)(y − x)

y = x + ∆x

f(x + ∆x) ≥ f(x) + ∇f T (x)∆x

x

f(x)

0

Function
Global linear
lower bound

Twice differentiable function defined on the convex set is convex if and

only if :

In other words, :

The function is convex if and only if its epigraph is a convex set.

If - is a convex function defined on the convex set , then for any

sublevel set is convex.

The function defined on the convex set is closed if and only if for any

sublevel set is closed.

 is convex if and only if is a convex set and the function

Second order differential criterion of convexity
f(x) S ⊆ Rn

∀x ∈ int(S) ≠ ∅

∇2f(x) ⪰ 0

∀y ∈ Rn

⟨y, ∇2f(x)y⟩ ≥ 0

Connection with epigraph

Connection with sublevel set
f(x) S ⊆ Rn β

Lβ

f(x) S ⊆ Rn β

Lβ

Reduction to a line
f : S → R S g(t) = f(x + tv)

defined on is convex for any , which allows to check

convexity of the scalar function in order to establish convexity of the vector function.

, defined on the convex set , is called -strongly convex (strongly

convex) on , if:

for any and for some .

x

f(x)

0

Function
Global quadratic

lower bound

Differentiable defined on the convex set is -strongly convex if and only

if :

Let , then the criterion will become more tractable:

{t ∣ x + tv ∈ S} x ∈ S, v ∈ Rn

Strong convexity
f(x) S ⊆ Rn µ

S

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) − µλ(1 − λ)∥x1 − x2∥2

x1, x2 ∈ S 0 ≤ λ ≤ 1 µ > 0

Criteria of strong convexity

First order differential criterion of strong convexity
f(x) S ⊆ Rn µ

∀x, y ∈ S

f(y) ≥ f(x) + ∇f T (x)(y − x) + µ

2
∥y − x∥2

y = x + ∆x

Twice differentiable function defined on the convex set is called -

strongly convex if and only if :

In other words:

 is called (strictly) concave, if the function - is (strictly) convex.

Jensen’s inequality for the convex functions:

for (probability simplex)

For the infinite dimension case:

If the integrals exist and

If the function and the set are convex, then any local minimum

 will be the global one. Strong convexity guarantees the

uniqueness of the solution.

f(x + ∆x) ≥ f(x) + ∇f T (x)∆x + µ

2
∥∆x∥2

Second order differential criterion of strong convexity
f(x) S ⊆ Rn µ

∀x ∈ int(S) ≠ ∅

∇2f(x) ⪰ µI

⟨y, ∇2f(x)y⟩ ≥ µ∥y∥2

Facts
• f(x) −f(x)

•

f (n∑
i=1

αixi) ≤
n∑

i=1

αif(xi)

αi ≥ 0;
n

∑
i=1

αi = 1

f ∫
S

xp(x)dx ≤ ∫
S

f(x)p(x)dx
⎛⎜⎝ ⎞⎟⎠p(x) ≥ 0, ∫

S

p(x)dx = 1

• f(x) S

x∗ = arg min
x∈S

f(x)

Operations that preserve convexity

https://fmin.xyz/

Non-negative sum of the convex functions: .

Composition with affine function is convex, if is convex.

Pointwise maximum (supremum): If are convex, then

 is convex.

If is convex on for any : is convex.

If is convex on , then - is convex with .

Let and , where . If and are

convex, and is increasing, then is convex on .

Log-convex: is convex; Log convexity implies convexity.

Log-concavity: concave; not closed under addition!

Exponentially convex: , for

Operator convex:

Quasiconvex:

Pseudoconvex:

Discrete convexity: ; “convexity + matroid theory.”

Steven Boyd lectures

Suvrit Sra lectures

Martin Jaggi lectures

⎜ ⎟• αf(x) + βg(x), (α ≥ 0, β ≥ 0)
• f(Ax + b) f(x)
• f1(x), … , fm(x)

f(x) = max{f1(x), … , fm(x)}
• f(x, y) x y ∈ Y g(x) = sup

y∈Y
f(x, y)

• f(x) S g(x, t) = tf(x/t) x/t ∈ S, t > 0
• f1 : S1 → R f2 : S2 → R range(f1) ⊆ S2 f1 f2

f2 f2 ∘ f1 S1

Other forms of convexity
• log f

• log f

• [f(xi + xj)] ⪰ 0 x1, … , xn

• f(λX + (1 − λ)Y) ⪯ λf(X) + (1 − λ)f(Y)
• f(λx + (1 − λ)y) ≤ max{f(x), f(y)}
• ⟨∇f(y), x − y⟩ ≥ 0 ⟶ f(x) ≥ f(y)
• f : Zn → Z

References
•

•

•

http://web.stanford.edu/class/ee364a/lectures/functions.pdf
http://suvrit.de/teach/ee227a/lect3.pdf
https://github.com/epfml/OptML_course/raw/master/slides/lecture01.pdf

