
Methods / Automatic differentiation

Automatic differentiation is a scheme, that allows you to compute a value of gradient of

function with a cost of computing function itself only twice.

We will illustrate some important matrix calculus facts for specific cases

Suppose, we have the following functions  and . Then

The simplest example:

Now, we’ll consider :

But if we will add another dimension , than the -th output of  will be:
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where matrix  is the jacobian of the . Hence, we could write it in a vector

way:

The whole idea came from the applying chain rule to the computation graph of primitive

operations

All frameworks for automatic differentiation construct (implicitly or explicitly)

computation graph. In deep learning we typically want to compute the derivatives of
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the loss function  w.r.t. each intermediate parameters in order to tune them via

gradient descent. For this purpose it is convenient to use the following notation:

Let  be a topological ordering of the computation graph (i.e. parents come

before children).  denotes the variable we’re trying to compute derivatives of (e.g.

loss).

For :

Compute  as a function of its parents.

For :

Compute derivatives 

Note, that  term is coming from the children of , while  is already precomputed

effectively.
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Univariate logistic least squares regression

Forward pass Backward pass

The reason why it works so fast in practice is that the Jacobian of the operations are

already developed in effective manner in automatic differentiation frameworks.

Typically, we even do not construct or store the full Jacobian, doing matvec directly

instead.

See the examples of Vector-Jacobian Products from autodidact library:

defvjp(anp.add,         lambda g, ans, x, y : unbroadcast(x, g),

                        lambda g, ans, x, y : unbroadcast(y, g))

defvjp(anp.multiply,    lambda g, ans, x, y : unbroadcast(x, y * g),

                        lambda g, ans, x, y : unbroadcast(y, x * g))

defvjp(anp.subtract,    lambda g, ans, x, y : unbroadcast(x, g),

                        lambda g, ans, x, y : unbroadcast(y, -g))

defvjp(anp.divide,      lambda g, ans, x, y : unbroadcast(x,   g / y),

                        lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

defvjp(anp.true_divide, lambda g, ans, x, y : unbroadcast(x,   g / y),

Jacobian vector product

Example: element-wise exponent

y = exp (z) J = diag(exp(z)) –z = –yJ



                        lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Interesting, that the similar idea could be used to compute Hessian-vector products,

which is essential for second order optimization or conjugate gradient methods. For a

scalar-valued function  with continuous second derivatives (so that the

Hessian matrix is symmetric), the Hessian at a point  is written as . A

Hessian-vector product function is then able to evaluate

for any vector .

The trick is not to instantiate the full Hessian matrix: if  is large, perhaps in the millions

or billions in the context of neural networks, then that might be impossible to store.

Luckily, grad  (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an

efficient Hessian-vector product function. We just have to use the identity

where  is a new vector-valued function that dots the gradient of  at 

 with the vector . Notice that we’re only ever differentiating scalar-valued functions

of vector-valued arguments, which is exactly where we know grad  is efficient.

import jax.numpy as jnp

def hvp(f, x, v):

    return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Open in ColabOpen in Colab

Hessian vector product

f : Rn → R
x ∈ Rn ∂ 2f(x)

v ↦ ∂ 2f(x) ⋅ v

v ∈ Rn

n

∂ 2f(x)v = ∂[x ↦ ∂f(x) ⋅ v] = ∂g(x),

g(x) = ∂f(x) ⋅ v f

x v

Code

Materials

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd.ipynb


Autodidact - a pedagogical implementation of Autograd

CSC321 Lecture 6

CSC321 Lecture 10

Why you should understand backpropagation :)

JAX autodiff cookbook

Materials from CS207: Systems Development for Computational Science course

with very intuitive explanation.

•

•

•

•

•

•

https://github.com/mattjj/autodidact
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec06.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://harvard-iacs.github.io/2019-CS207/lectures/lecture10/notebook/


Theory / Convex sets / Convex set

Suppose  are two points in . Then the line segment between them is defined

as follows:

x1

x2

θ = 1

θ = 0

θ = 0.6

The set  is called convex if for any  from  the line segment between them also

lies in , i.e.

Any affine set

Ray

Line segment

Line segment
x1, x2 R!

x = θx1 + (1 − θ)x2, θ ∈ [0, 1]

Convex set
S x1, x2 S

S

∀θ ∈ [0, 1], ∀x1, x2 ∈ S : θx1 + (1 − θ)x2 ∈ S

Examples:
•

•

•

https://fmin.xyz/docs/theory/Theory/
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NOT BRO
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Let , then the point  is called the convex

combination of points  if .

Related definitions

Convex combination
x1, x2, … , xk ∈ S θ1x1 + θ2x2 + … + θkxk

x1, x2, … , xk

k

∑
i=1

θi = 1, θi ≥ 0



The set of all convex combinations of points from  is called the convex hull of the set 

.

The set  is the smallest convex set containing .

The set  is convex if and only if .

Examples: 

BRO BRO

BRO

BRO

BRO BRO

In practice it is very important to understand whether a specific set is convex or not.

Two approaches are used for this depending on the context.

By definition.

Show that  is derived from simple convex sets using operations that preserve

convexity.

Convex hull
S

S

conv(S) = { k∑
i=1

θixi ∣ xi ∈ S,
k∑

i=1

θi = 1, θi ≥ 0}
• conv(S) S

• S S = conv(S)

Finding convexity

•

• S

By definition



Let there be 2 convex sets , let the set 

Take two points from :  and prove that the

segment between them  also belongs to 

If the desired intersection is empty or contains one point, the property is proved by

definition. Otherwise, take 2 points and a segment between them. These points must lie

in all intersecting sets, and since they are all convex, the segment between them lies in

all sets and, therefore, in their intersection.

Examples of affine functions: extension, projection, transposition, set of solutions of

linear matrix inequality . Here  are

symmetric matrices .

Note also that the prototype of the convex set under affine mapping is also convex.

x1, x2 ∈ S, 0 ≤ θ ≤ 1 → θx1 + (1 − θ)x2 ∈ S

Preserving convexity

The linear combination of convex sets is convex

Sx, Sy

S = {s ∣ s = c1x + c2y, x ∈ Sx, y ∈ Sy, c1, c2 ∈ R}

S s1 = c1x1 + c2y1, s2 = c1x2 + c2y2

θs1 + (1 − θ)s2, θ ∈ [0, 1] S

θs1 + (1 − θ)s2

θ(c1x1 + c2y1) + (1 − θ)(c1x2 + c2y2)

c1(θx1 + (1 − θ)x2) + c2(θy1 + (1 − θ)y2)

c1x + c2y ∈ S

The intersection of any (!) number of convex sets is convex

The image of the convex set under affine mapping is convex

S ⊆ Rn convex → f(S) = {f(x) ∣ x ∈ S} convex (f(x) = Ax + b)

{x ∣ x1A1 + … + xmAm ⪯ B} Ai, B ∈ Sp

p × p

S ⊆ Rm convex → f −1(S) = {x ∈ Rn ∣ f(x) ∈ S} convex (f(x) = Ax + b)
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Theory / Convex function

The function , which is defined on the convex set , is called convex on 

, if:

for any  and .

If above inequality holds as strict inequality  and , then function is

called strictly convex on .

x1

x2 Convex
Non Convex

The sum of the largest  coordinates 

Convex function
f(x) S ⊆ Rn

S

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

x1, x2 ∈ S 0 ≤ λ ≤ 1
x1 ≠ x2 0 < λ < 1

S

Examples
• f(x) = xp, p > 1, x ∈ R+

• f(x) = ∥x∥p, p > 1, x ∈ Rn

• f(x) = ecx, c ∈ R, x ∈ R
• f(x) = − ln x, x ∈ R++

• f(x) = x ln x, x ∈ R++

• k f(x) = x(1) + … + x(k), x ∈ Rn

• f(X) = λmax(X), X = X T

https://fmin.xyz/docs/theory/Theory/


For the function , defined on , the following set:

is called epigraph of the function .

x1

x2

Epi f(x)
f(x)

For the function , defined on , the following set:

is called sublevel set or Lebesgue set of the function .

• f(X) = − log det X, X ∈ S n
++

Epigraph
f(x) S ⊆ Rn

epi f = {[x, µ] ∈ S × R : f(x) ≤ µ}

f(x)

Sublevel set
f(x) S ⊆ Rn

Lβ = {x ∈ S : f(x) ≤ β}

f(x)



x

f(x)

0

Sublevel set

β

L β

The differentiable function  defined on the convex set  is convex if and

only if :

Let , then the criterion will become more tractable:

Criteria of convexity

First order differential criterion of convexity
f(x) S ⊆ Rn

∀x, y ∈ S

f(y) ≥ f(x) + ∇f T (x)(y − x)

y = x + ∆x

f(x + ∆x) ≥ f(x) + ∇f T (x)∆x



x

f(x)

0

Function
Global linear 
lower bound

Twice differentiable function  defined on the convex set  is convex if and

only if :

In other words, :

The function is convex if and only if its epigraph is a convex set.

If  - is a convex function defined on the convex set , then for any 

sublevel set  is convex.

The function  defined on the convex set  is closed if and only if for any 

sublevel set  is closed.

 is convex if and only if  is a convex set and the function 

Second order differential criterion of convexity
f(x) S ⊆ Rn

∀x ∈ int(S) ≠ ∅

∇2f(x) ⪰ 0

∀y ∈ Rn

⟨y, ∇2f(x)y⟩ ≥ 0

Connection with epigraph

Connection with sublevel set
f(x) S ⊆ Rn β

Lβ

f(x) S ⊆ Rn β

Lβ

Reduction to a line
f : S → R S g(t) = f(x + tv)



defined on  is convex for any , which allows to check

convexity of the scalar function in order to establish convexity of the vector function.

, defined on the convex set , is called -strongly convex (strongly

convex) on , if:

for any  and  for some .

x

f(x)

0

Function
Global quadratic 

lower bound

Differentiable  defined on the convex set  is -strongly convex if and only

if :

Let , then the criterion will become more tractable:

{t ∣ x + tv ∈ S} x ∈ S, v ∈ Rn

Strong convexity
f(x) S ⊆ Rn µ

S

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) − µλ(1 − λ)∥x1 − x2∥2

x1, x2 ∈ S 0 ≤ λ ≤ 1 µ > 0

Criteria of strong convexity

First order differential criterion of strong convexity
f(x) S ⊆ Rn µ

∀x, y ∈ S

f(y) ≥ f(x) + ∇f T (x)(y − x) + µ

2
∥y − x∥2

y = x + ∆x



Twice differentiable function  defined on the convex set  is called -

strongly convex if and only if :

In other words:

 is called (strictly) concave, if the function  - is (strictly) convex.

Jensen’s inequality for the convex functions:

for  (probability simplex)

For the infinite dimension case:

If the integrals exist and 

If the function  and the set  are convex, then any local minimum 

 will be the global one. Strong convexity guarantees the

uniqueness of the solution.

f(x + ∆x) ≥ f(x) + ∇f T (x)∆x + µ

2
∥∆x∥2

Second order differential criterion of strong convexity
f(x) S ⊆ Rn µ

∀x ∈ int(S) ≠ ∅

∇2f(x) ⪰ µI

⟨y, ∇2f(x)y⟩ ≥ µ∥y∥2

Facts
• f(x) −f(x)

•

f ( n∑
i=1

αixi) ≤
n∑

i=1

αif(xi)

αi ≥ 0;
n

∑
i=1

αi = 1

f ∫
S

xp(x)dx ≤ ∫
S

f(x)p(x)dx
⎛⎜⎝ ⎞⎟⎠p(x) ≥ 0, ∫

S

p(x)dx = 1

• f(x) S

x∗ = arg min
x∈S

f(x)

Operations that preserve convexity
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Non-negative sum of the convex functions: .

Composition with affine function  is convex, if  is convex.

Pointwise maximum (supremum): If  are convex, then 

 is convex.

If  is convex on  for any :  is convex.

If  is convex on , then  - is convex with .

Let  and , where . If  and  are

convex, and  is increasing, then  is convex on .

Log-convex:  is convex; Log convexity implies convexity.

Log-concavity:  concave; not closed under addition!

Exponentially convex: , for 

Operator convex: 

Quasiconvex: 

Pseudoconvex: 

Discrete convexity: ; “convexity + matroid theory.”

Steven Boyd lectures

Suvrit Sra lectures

Martin Jaggi lectures

⎜ ⎟• αf(x) + βg(x), (α ≥ 0, β ≥ 0)
• f(Ax + b) f(x)
• f1(x), … , fm(x)

f(x) = max{f1(x), … , fm(x)}
• f(x, y) x y ∈ Y g(x) = sup

y∈Y
f(x, y)

• f(x) S g(x, t) = tf(x/t) x/t ∈ S, t > 0
• f1 : S1 → R f2 : S2 → R range(f1) ⊆ S2 f1 f2

f2 f2 ∘ f1 S1

Other forms of convexity
• log f

• log f

• [f(xi + xj)] ⪰ 0 x1, … , xn

• f(λX + (1 − λ)Y ) ⪯ λf(X) + (1 − λ)f(Y )
• f(λx + (1 − λ)y) ≤ max{f(x), f(y)}
• ⟨∇f(y), x − y⟩ ≥ 0 ⟶ f(x) ≥ f(y)
• f : Zn → Z
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