Portfolio optimization

source

Portfolio allocation vector

In this example we show how to do portfolio optimization using CVXPY. We begin with the
basic definitions. In portfolio optimization we have some amount of money to invest in any of
n different assets. We choose what fraction w; of our money to invest in each asset ¢,
1=1,...,n.

We call w € R" the portfolio allocation vector. We of course have the constraint that

17w = 1. The allocation w; < 0 means a short position in asset ¢, or that we borrow shares
to sell now that we must replace later. The allocation w > 0 is a long only portfolio. The
quantity

w|1 = 17wy + 17w

is known as leverage.

Asset returns

We will only model investments held for one period. The initial prices are p; > 0. The end of

period prices are p;” > 0. The asset (fractional) returns are r; = (p;” — p;)/p;. The porfolio

(fractional) returnis R = 7T w.

https://www.cvxpy.org/examples/index.html

A common model is that r is a random variable with mean Er = y and covariance
E(r — p)(r — p)T = 3. It follows that R is a random variable with ER = p?'w and
var(R) = w'Sw. ER is the (mean) return of the portfolio. var(R) is the risk of the
portfolio. (Risk is also sometimes given as std(R) = +/var(R).)

Portfolio optimization has two competing objectives: high return and low risk.

Classical (Markowitz) portfolio optimization
Classical (Markowitz) portfolio optimization solves the optimization problem

maximize p’w — yw! Lw

subject to 1Tw=1, weWw,

where w € R" is the optimization variable, W is a set of allowed portfolios (e.g., W = Ri
for a long only portfolio), and v > 0 is the risk aversion parameter.

The objective ,uTw — 'waEw is the risk-adjusted return. Varying <y gives the optimal risk-
return trade-off. We can get the same risk-return trade-off by fixing return and minimizing
risk.

Example

In the following code we compute and plot the optimal risk-return trade-off for 10 assets,
restricting ourselves to a long only portfolio.

Generate data for long only portfolio optimization.
import numpy as np

np.random.seed (1)

n =10

mu = np.abs(np.random.randn(n, 1))

Sigma = np.random.randn(n, n)

Sigma = Sigma.T @ Sigma

Long only portfolio optimization.
import cvxpy as cp

w = cp.Variable(n)

gamma = cp.Parameter (nonneg=True)

ret = mu.T @ w

risk = cp.quad form(w, Sigma)

prob = cp.Problem(cp.Minimize(gamma*risk - ret),
[cp.sum(w) == 1,
w >= 0])

Compute trade-off curve.
from tgdm.auto import tgdm
SAMPLES = 100
risk data = np.zeros(SAMPLES)
ret data = np.zeros(SAMPLES)
gamma_vals = np.logspace(-2, 3, num=SAMPLES)
for i in tgdm(range(SAMPLES)):
gamma.value = gamma vals[i]
prob.solve()

cp.sqgrt(risk).value
ret.value

risk data[i] =
ret data[i] =

100% || 100/100 [00:00<00:00, 478.73it/s]

Plot long only trade-off curve.
import matplotlib.pyplot as plt
¢matplotlib inline
$config InlineBackend.figure format = 'svg'
markers_on = [29,
fig = plt.figure()
ax = fig.add subplot(111)
plt.plot(risk _data, ret data,
for marker in markers on:
plt.plot(risk _data[marker], ret data[marker],
ax.annotate(r"$\gamma =
for i in range(n):
plt.plot(cp.sqgrt(Sigma[i,i]).value, mu[i],
plt.xlabel('Standard deviation')
plt.ylabel('Return’')

40]

'g-")

ro'

'bs')

)

plt.show()
2.0
o
1.5 4
£
2
7]
o
1.0 4
o
0.5 o
° []
0.5 1.0 1.5 2.0 2.5 3.0

Standard deviation

We plot below the return distributions for the two risk aversion values marked on the trade-
off curve. Notice that the probability of a loss is near O for the low risk value and far above 0

for the high risk value.

Plot return distributions for two points on the trade-off curve.

import scipy.stats as spstats

plt.figure()
for midx, idx in enumerate(markers on):
gamma.value = gamma vals[idx]
prob.solve()
X = np.linspace(-2,
plt.plot(x,

5, 1000)

plt.xlabel('Return')

spstats.norm.pdf (x, ret.value, risk.value),

label=r"$\gamma

$.2f$" % gamma_ vals[marker], xy=(risk data[marker

plt.ylabel('Density")
plt.legend(loc="'upper right')
plt.show()

1.2

Return

Portfolio constraints

There are many other possible portfolio constraints besides the long only constraint. With no
constraint (W = R"), the optimization problem has a simple analytical solution. We will look

in detail at a leverage limit, or the constraint that ||w||; < L™,

Another interesting constraint is the market neutral constraint mTYw = 0, where m; is the
capitalization of asset . M = mIr is the market return, and m? Lw = cov(M, R). The
market neutral constraint ensures that the portfolio return is uncorrelated with the market
return.

Example

In the following code we compute and plot optimal risk-return trade-off curves for leverage
limits of 1, 2, and 4. Notice that more leverage increases returns and allows greater risk.

Portfolio optimization with leverage limit.
Lmax = cp.Parameter()
prob = cp.Problem(cp.Maximize(ret - gamma*risk),
[cp.sum(w) == 1,
cp.norm(w, 1) <= Lmax])

Compute trade-off curve for each leverage limit.
L vals = [1, 2, 4]
SAMPLES = 100
risk data = np.zeros((len(L_vals), SAMPLES))
ret data = np.zeros((len(L_vals), SAMPLES))
gamma_vals = np.logspace(-2, 3, num=SAMPLES)
w_vals = []
for k, L _val in enumerate(L_vals):

for i in range(SAMPLES):

Lmax.value = L val

gamma.value = gamma vals[i]
prob.solve(solver=cp.CVXOPT)

risk datal[k, i] = cp.sqrt(risk).value
ret_datal[k, i] = ret.value

Plot trade-off curves for each leverage limit.
for idx, L _val in enumerate(L_vals):
plt.plot(risk data[idx,:], ret data[idx,:], label=r"$L"{\max}$ = %d" %
for w val in w_vals:
w.value = w_val
plt.plot(cp.sqgrt(risk).value, ret.value, 'bs')
plt.xlabel('Standard deviation')
plt.ylabel('Return')
plt.legend(loc='lower right')
plt.show()

Return
w

0 1 2 3 4 5 6 7
Standard deviation

We next examine the points on each trade-off curve where wl Sw = 2. We plot the amount
of each asset held in each portfolio as bar graphs. (Negative holdings indicate a short
position.) Notice that some assets are held in a long position for the low leverage portfolio
but in a short position in the higher leverage portfolios.

Portfolio optimization with a leverage limit and a bound on risk.
prob = cp.Problem(cp.Maximize(ret),

[cp.sum(w) == 1,

cp.norm(w, 1) <= Lmax,

risk <= 27)

Compute solution for different leverage limits.
for k, L_val in enumerate(L_vals):

Lmax.value = L val

prob.solve()

w_vals.append(w.value)

Plot bar graph of holdings for different leverage limits.

colors = ['b', 'g', 'r']

indices = np.argsort(mu.flatten())
for idx, L _val in enumerate(L_vals):
plt.bar(np.arange(l,n+l) + 0.25%idx - 0.375, w_vals[idx][indices], color
label=r"S$L"{\max}$ = %d" % L_val, width = 0.25)
plt.ylabel(r"sw_is$", fontsize=16)
plt.xlabel(r"i", fontsize=16)
plt.xlim([1-0.375, 10+.375])
plt.xticks(np.arange(l,n+1))
plt.show()

1.0 A
0.8 -
0.6 -
0.4 -
0.2 A
0.0 A ‘
—0.2 ~

—0.4

Variations

There are many more variations of classical portfolio optimization. We might require that
pTw > R™™ and minimize w’ Lw or || XY/2w]|2. We could include the (broker) cost of short
positions as the penalty sT(w)_ for some s > 0. We could include transaction costs (from a
previous portfolio wP™") as the penalty

kT |lw —wP™v |7 k> 0.

Common values of paren =1, 3/2, 2.

Factor covariance model

A particularly common and useful variation is to model the covariance matrix X as a factor
model

> =F>FT + D,

where F' € RnXk, k < n is the factor loading matrix. k is the number of factors (or sectors)
(typically 10s). Fj; is the loading of asset ¢ to factor j. D is a diagonal matrix; D;; > 0 is the

idiosyncratic risk. > > 0 is the factor covariance matrix.

FTw e RF gives the portfolio factor exposures. A portfolio is factor j neutral if
(}?TQH)j;: 0.

Portfolio optimization with factor covariance model

Using the factor covariance model, we frame the portfolio optimization problem as

maximize plw — 7y (fTi f+ wTDw)
subject to 1Tw=1, f=FTw
weW, feF,

where the variables are the allocations w € R" and factor exposures f € R" and F gives
the factor exposure constraints.

Using the factor covariance model in the optimization problem has a computational
advantage. The solve time is O(nk?) versus O(n?) for the standard problem.

Example

In the following code we generate and solve a portfolio optimization problem with 50 factors
and 3000 assets. We set the leverage limit = 2 and v = 0.1.

We solve the problem both with the covariance given as a single matrix and as a factor
model. Using CVXPY with the OSQP solver running in a single thread, the solve time was
173.30 seconds for the single matrix formulation and 0.85 seconds for the factor model
formulation. We collected the timings on a MacBook Air with an Intel Core i7 processor.

Generate data for factor model.

n = 3000

m = 50

np.random.seed (1)

mu = np.abs(np.random.randn(n, 1))

Sigma_tilde = np.random.randn(m, m)
Sigma_tilde Sigma_tilde.T.dot(Sigma_tilde)

D np.diag(np.random.uniform(0, 0.9, size=n))
F np.random.randn(n, m)

Factor model portfolio optimization.

w = cp.Variable(n)

f = F.T*w

gamma = cp.Parameter (nonneg=True)

Lmax = cp.Parameter()

ret = mu.T*w

risk = cp.quad form(f, Sigma tilde) + cp.quad_form(w, D)

prob_factor = cp.Problem(cp.Maximize(ret - gamma*risk),
[cp.sum(w) == 1,
cp.norm(w, 1) <= Lmax])

Solve the factor model problem.
Lmax.value = 2

gamma.value = 0.1

prob factor.solve(verbose=True)

CVXPY
v1.2.0

(CVXPY) Mar 24 01:28:51 PM: Your problem has 3000 variables, 2 constraints, an

/Users/bratishka/anaconda3/1lib/python3.9/site-packages/cvxpy/expressions/expre
ssion.py:593: UserWarning:
This use of ~~* " has resulted in matrix multiplication.
Using ~~* " for matrix multiplication has been deprecated since CVXPY 1.1.
Use "~ * " for matrix-scalar and vector-scalar multiplication.
Use ~~@°" for matrix-matrix and matrix-vector multiplication.
Use ~"multiply "~ for elementwise multiplication.
This code path has been hit 1 times so far.

warnings.warn(msg, UserWarning)
/Users/bratishka/anaconda3/lib/python3.9/site-packages/cvxpy/expressions/expre
ssion.py:593: UserWarning:
This use of ~° has resulted in matrix multiplication.
Using =~ * for matrix multiplication has been deprecated since CVXPY 1.1.
Use °" for matrix-scalar and vector-scalar multiplication.
Use ~"@°" for matrix-matrix and matrix-vector multiplication.

x>~

*

Use ~"multiply for elementwise multiplication.
This code path has been hit 2 times so far.

warnings.warn(msg, UserWarning)
(CVXPY) Mar 24 01:28:51 PM: It is compliant with the following grammars: DCP,
DQCP
(CVXPY) Mar 24 01:28:51 PM: CVXPY will first compile your problem; then, it wi
11 invoke a numerical solver to obtain a solution.

(CVXPY) Mar 24 01:28:51 PM: Compiling problem (target solver=0SQP).

(CVXPY) Mar 24 01:28:51 PM: Reduction chain: FlipObjective -> CvxAttr2Constr -
> QOp2SymbolicQp -> QpMatrixStuffing -> OSQP

(CVXPY) Mar 24 01:28:51 PM: Applying reduction FlipObjective

(CVXPY) Mar 24 01:28:51 PM: Applying reduction CvxAttr2Constr

(CVXPY) Mar 24 01:28:51 PM: Applying reduction Qp2SymbolicQp

(CVXPY) Mar 24 01:28:51 PM: Applying reduction QpMatrixStuffing

(CVXPY) Mar 24 01:28:51 PM: Applying reduction OSQP

(CVXPY) Mar 24 01:28:51 PM: Finished problem compilation (took 1.366e-01 secon
ds).

(CVXPY) Mar 24 01:28:51 PM: (Subsequent compilations of this problem, using th
e same arguments, should take less time.)

(CVXPY) Mar 24 01:28:51 PM: Invoking solver OSQP to obtain a solution.
0OSQP v0.6.2 - Operator Splitting QP Solver
(c) Bartolomeo Stellato, Goran Banjac
University of Oxford - Stanford University 2021
problem: variables n = 6050, constraints m = 6052
nnz(P) + nnz(A) = 172325
settings: linear system solver = gdldl,
eps _abs = 1.0e-05, eps rel = 1.0e-05,
eps _prim inf = 1.0e-04, eps_dual inf = 1.0e-04,
rho = 1.00e-01 (adaptive),
sigma = 1.00e-06, alpha = 1.60, max iter = 10000
check termination: on (interval 25),
scaling: on, scaled termination: off
warm start: on, polish: on, time limit: off

iter objective pri res dua res rho time
1 -2.1359e+03 7.63e+00 3.73e+02 1.00e-01 2.38e-02s
200 -4.1946e+00 1.59e-03 7.86e-03 3.60e-01 1.82e-01s
400 -4.6288e+00 3.02e-04 6.0le-04 3.60e-01 3.18e-01s
600 -4.6444e+00 2.20e-04 7.87e-04 3.60e-01 4.55e-01s
800 -4.6230e+00 1.09e-04 3.70e-04 3.60e-01 5.91e-01s
1000 -4.6223e+00 8.59%9e-05 1.04e-04 3.60e-01 7.27e-01s
1200 -4.6205e+00 8.56e-05 9.35e-06 3.60e-01 8.65e-01s
1400 -4.6123e+00 6.44e-05 1.54e-04 3.60e-01 1.00e+00s
1575 -4.6064e+00 2.97e-05 4.06e-05 3.60e-01 1.12e+00s

status: solved
solution polish: unsuccessful
number of iterations: 1575

optimal objective: -4.6064

run time: 1.14e+00s

optimal rho estimate: 3.87e-01

(CVXPY) Mar 24 01:28:52 PM: Problem status: optimal
(CVXPY) Mar 24 01:28:52 PM: Optimal value: 4.606e+00
(CVXPY) Mar 24 01:28:52 PM: Compilation took 1.366e-01 seconds

(CVXPYi Mar 24 01:28:52 PM: Solver iincludini time sient in interfacei took 1.

4.606413077728827

Standard portfolio optimization with data from factor model.
risk = cp.quad form(w, F.dot(Sigma tilde).dot(F.T) + D)
prob = cp.Problem(cp.Maximize(ret - gamma*risk),

[cp.sum(w) == 1,

cp.norm(w, 1) <= Lmax])

Uncomment to solve the problem.
WARNING: this will take many minutes to run.
prob.solve(verbose=True, max iter=30000)

CVXPY
v1l.2.0

(CVXPY) Mar 24 01:28:54 PM: Your problem has 3000 variables, 2 constraints, an

print('Factor model solve time
print('Single model solve time

{}'.format(prob_factor.solver stats.solve ti
{}'.format(prob.solver stats.solve time))

2.1817036670000003
447.57964334400003

Factor model solve time
Single model solve time

Materials

e Portfolio Optimization Algo Trading colab notebook
e Multi objective portfolio optimization

https://colab.research.google.com/drive/1nN5yOB3ZFXKxq4y9WwzCVTV1i_BVpfAD#scrollTo=5hQgHpjM87r4
https://colab.research.google.com/github/Hvass-Labs/FinanceOps/blob/master/04_Multi-Objective_Portfolio_Optimization.ipynb#scrollTo=84UWnvT9iA4p

Optimality conditions. KKT
Background

Extreme value (Weierstrass) theorem

Let S C R" be compact set and f(x) continuous function on S. So that, the point of the global

minimum of the function f(z) on S exists.

GOODINEWSIEUERVONE!

Lagrange multipliers

Consider simple yet practical case of equality constraints:

f(z) — min
zeRn

st. hi(z)=0,i=1,...,m

The basic idea of Lagrange method implies switch from conditional to unconditional optimization

through increasing the dimensionality of the problem:
m

L(z,)\) = f(z) + Y Aihi(z) » min

; zeR? AeR™
=1

General formulations and conditions

f(z) — min

We say that the problem has a solution if the following set is not empty: z* € S, in which the

minimum or the infimum of the given function is achieved.

Unconstrained optimization

General case

Let f(z) : R — R be a twice differentiable function.

o
f(z) — min

If £* - is a local minimum of f(z), then:

X7 £(X*%\ N

(TTD.N\T

af://n470
af://n473
af://n474
af://n477
af://n482
af://n486
af://n487

VJjW) —u (UL .1NoLGDDdaLy)
If f(x) at some point z* satisfies the following conditions:

H(z*) = V2f(z*) = (=)0, (UP:Sufficient)
then (if necessary condition is also satisfied) z* is a local minimum(maximum) of f(z).

Convex case

It should be mentioned, that in convex case (i.e., f(x) is convex) necessary condition becomes
sufficient. Moreover, we can generalize this result on the class of non-differentiable convex
functions.

Let f(z) : R™ — R - convex function, then the point z* is the solution of (UP) if and only if:
0, € 0f(z")

One more important result for convex constrained case sounds as follows. If f(z) : S — R -
convex function defined on the convex set .S, then:

e Any local minima is the global one.
e The set of the local minimizers S* is convex.
e If f(z) - strongly convex function, then §* contains only one single point $* = z*.

Optimization with equality conditions

Intuition

Things are pretty simple and intuitive in unconstrained problem. In this section we will add one
equality constraint, i.e.

f(z) — min
s.t. h(z) =0

We will try to illustrate approach to solve this problem through the simple example with
f(z) =z, + zyand h(z) = 2 + 22 — 2

af://n495
af://n507
af://n508

h(z) = x/+x,°-2=0

\\

C=2

C=1

feasible point
93

Ty

0%

¥,
f(zp+61) < fl1p)

oxT(-Vf(x)) >0

Vf

Vh(zp \

Vh(zy

Vh(x: \
oYU

6X Vh(x:)=0

Generally: in order to move from x r along the budget set towards decreasing the function, we
need to guarantee two conditions:

{6z, Vh(zp)) =0
(6z, =V f(zF)) >0
Let's assume, that in the process of such a movement we have come to the point where
Vf(z) = AVh(z)
(0, —V f(x)) = —(dx,A\Vh(x)) =0

Then we came to the point of the budget set, moving from which it will not be possible to reduce
our function. This is the local minimum in the limited problem:)

5

Vh(zy

'V

X
Vi) = pVh(r) \\‘

So let's define a Lagrange function (just for our convenience):

L(z,A) = f(z) + Ah(z)
Then the point * be the local minimum of the problem described above, if and only if:

V.L(z*,*) = 0 that’s written above
VaL(z*,*) = 0 condition of being in budget set
(y, V2 L(z*,\")y) >0, VycR":Vh(z*) y=0

We should notice that L(z*, A*) = f(z*).

General formulation

f(z) — min
z€R™

st.hi(z)=0,i=1,...,m

Solution

af://n533

m

L(z,\) = f(z) + Y Aihi(z) = f(z) + A h(z)

i=1

Let f(z) and h;(x) be twice differentiable at the point * and continuously differentiable in some
neighborhood z*. The local minimum conditions for x € R™, A € R™ are written as
V.L(z*,*) =0
VoL(z*, *) = 0
(y, V3, L(z", A")y) 20, VyeR":Vh(z")'y=0

Depending on the behavior of the Hessian, the critical points can have a different character.

v Hy 7 Definiteness H Nature x* \ A
(-
>0 Positive d. Minimum
=
2 gy . //
=0 Positive semi-d. Valley y
(
#0 Indefinite Saddlepoint /i
. . . -
< Negative semi-d. Ridge
<0 9 9 - g
=,
<0 Negative d. Maximum F | 4 N

Optimization with inequality conditions

Example
fle) =2 +a; g(z)=ai+a;-1
f(z) — min
s.t.g(z) <0
Tutorial example - Cost function
A T2

minimum of f(x)

Ty

.y >

7N

/’

iso-contours of f(x)

(£60)=a?+43 |

af://n541
af://n542

Tutorial example - Feasible region

/\x2

feasible region: g(x) <0

X1

N
S

iso-contours of f(x)

(9 =2t +23-1 |

How do we recognize if x. is at a local optimum?

4\322
How can we recognize X
is at a local minimum?

7 S
%

Remember xr denotes a feasible point.

Easy in this case

22

How can we recognize Xg Unconstrained minimum
is at a local minimum? of f(X) lies within

the feasible region.

Ty

'y >

7

.". Necessary and sufficient conditions for a constrained local
minimum are the same as for an unconstrained local minimum.

[fo(xp) =0 and Vxxf(xf) is positive definite]

Thus, if the constraints of the type of inequalities are inactive in the UM problem, then don't
worry and write out the solution to the UM problem. However, this is not a heal-all :) Consider the
second childish example

f(z) = (zy —1.1)% + (29 +1.1)* g(z) =2 +25 -1

o
f(z) — min

s.t.g(z) <0

Tutorial example - Cost function

/\x2

minimum of f(x)

iso-contours of f(x) —

[f(x) — (@1 — 1.1)2 + (z + 1.1)?]

Tutorial example - Feasible region

-

feasible region: g(x) <0

\/

I

iso-contours of f(x) —\>‘<

S

(900 =2t +23-1

How do we recognize if x. is at a local optimum?

T2

(N
4

Is x¢ at a local minimum?

o[
7
e

Remember x; denotes a feasible point.

How do we recognize if x. is at a local optimum?

222 Unconstrained local
How can we tell if xg minimum of f(X)
is at a local minimum? lies outside of the

feasible region.

. \A\ yz
\f |

. the constrained local minimum occurs on the surface of the
constraint surface.

How do we recognize if x. is at a local optimum?

222 Unconstrained local
How can we tell if xg minimum of f(X)
is at a local minimum? lies outside of the

feasible region.

. \/\\ yz
\f |

.". Effectively have an optimization problem with an equality
constraint: g(x) = 0.

Given an equality constraint

4\x2

N
% .

L
7 7

o
~

A local optimum occurs when Vi f(x) and Vy g(x) are parallel:

(V= /(%) = AVxg(x) |

Want a constrained local minimum...

X Not a constrained
local minimum as
—Vx f(x¢) points

in towards the
feasible region 4

/\xQ

L4

Vv

A~

S

D)

.". Constrained local minimum occurs when —Vy f(x) and Vi g(x)
point in the same direction:

[—vx F(x) = AWy g(x) and A>0]

Want a constrained local minimum...

v’ Is a constrained

AT local minimum as

—Vx f(x¢) points
away from the
feasible region

o
~

.". Constrained local minimum occurs when —V f(x) and Vy g(x)
point in the same direction:

[—vx f(X) = AVy g(x) and A>0)

So, we have a problem:

Two possible cases:

g(z*) <0
1LV f(z?) =
V2f(z*) > 0
g(z*) =0
2. = Vf(z*) = uVg(z*), p>0
(y, V2, L(z*, u*)y) >0, YyeR":Vg(z*) y=0

Combining two possible cases, we can write down the general conditions for the problem:

f(z) — min
zcR"»

s.t.g(z) <0

Let's define the Lagrange function:

L(z,p) = f(z) + pg(z)
Then a* point - local minimum of the problem described above, if and only if:
) VoL(z¥,p*) = 0
)u > 0
) wg(x) 0
4) gz)
) (y, (S ut)y) >0, YyeR":Vg(z")'y=0

(1
(2
(3
(

(5

It's noticeable, that L(x*, ,u*) = f(z*). Conditions u* = 0, (1), (4) are the first scenario
realization, and conditions p* > 0, (1), (3) - the second.

General formulation

f(z) — min
zeR”
s.t. gl(m)<0 z—l
hj(x) = 1,...,p

This formulation is a general problem of mathematical programming. From now, we only consider
regular tasks. This is a very important remark from a formal point of view. Those wishing to
understand in more detail, please refer to Google.

Solution
p m
L(z, p, A) = f(z) + Z Ajhj(z) + Z pigi(z)
j=1 i=1

Karush-Kuhn-Tucker conditions

Let * be a solution to a mathematical programming problem, and the functions f, h;, g; are
differentiable. Then there are A* and p* such that the following conditions are carried out:

o V,L(z* M\, p*) =0
e VoL(z*, A, pn*)=0
e p; =0

s pjgi(z*) =0

e gj(z") <0

These conditions are sufficient if the problem is regular, i.e. if:

af://n571
af://n576

1. the given problem is a convex optimization problem (i.e., the functions f and g; are convex,
h; are affine) and the Slater condition is satisfied; or
2. strong duality is fulfilled.

References

e Lecture on KKT conditions (very intuitive explanation) in course "Elements of Statistical
Learning" @ KTH.
e One-line proof of KKT

af://n596
http://www.csc.kth.se/utbildning/kth/kurser/DD3364/Lectures/KKT.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11590-008-0096-3.pdf

