
Methods / First order methods / Gradient descent

@bibtex Files

A classical problem of function minimization is considered.

The bottleneck (for almost all gradient methods) is choosing step-size, which can

lead to the dramatic difference in method’s behavior.

One of the theoretical suggestions: choosing stepsize inversly proportional to the

gradient Lipschitz constant .

In huge-scale applications the cost of iteration is usually defined by the cost of

gradient calculation (at least).

If function has Lipschitz-continious gradient, then method could be rewritten as

follows:

Let’s consider a linear approximation of the differentiable function along some

direction :

We want to be a decreasing direction:

Summary

xk+1 = xk − ηk∇f(xk) (GD)

•

•

ηk = 1
L

•

O(p)
•

xk+1 = xk − 1
L

∇f (xk) =

= arg min
x∈Rn

{f (xk) + ⟨∇f (xk), x − xk⟩ + L

2
∥x − xk∥2

2}

Intuition

Direction of local steepest descent
f

h, ∥h∥2 = 1

f(x + ηh) = f(x) + η⟨f ′(x), h⟩ + o(η)

h

f(x + ηh) < f(x)

f(x) + η⟨f ′(x), h⟩ + o(η) < f(x)

https://fmin.xyz/docs/methods/Methods/
https://fmin.xyz/docs/exercises/fom/

and going to the limit at :

Also from Cauchy–Bunyakovsky–Schwarz inequality:

Thus, the direction of the antigradient

gives the direction of the steepest local decreasing of the function .

The result of this method is

Let’s consider the following ODE, which is referred as Gradient Flow equation.

and discretize it on a uniform grid with step:

where and - is the grid step.

From here we get the expression for

which is exactly gradient descent.

η → 0

⟨f ′(x), h⟩ ≤ 0

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2 → ⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

h = −
f ′(x)

∥f ′(x)∥2

f

xk+1 = xk − ηf ′(xk)

Gradient flow ODE

dx

dt
= −f ′(x(t))

η

xk+1 − xk

η
= −f ′(xk),

xk ≡ x(tk) η = tk+1 − tk

xk+1

xk+1 = xk − ηf ′(xk),

Necessary local minimum condition

This is, surely, not a proof at all, but some kind of intuitive explanation.

Some general highlights about Lipschitz properties are needed for explanation. If a

function is continuously differentiable and its gradient satisfies Lipschitz

conditions with constant , then :

which geometrically means, that if we’ll fix some point and define two

parabolas:

Then

Now, if we have global upper bound on the function, in a form of parabola, we can try to

go directly to its minimum.

f ′(x) = 0
− ηf ′(x) = 0
x − ηf ′(x) = x

xk − ηf ′(xk) = xk+1

Minimizer of Lipschitz parabola

f : Rn → R
L ∀x, y ∈ Rn

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2
∥y − x∥2,

x0 ∈ Rn

ϕ1(x) = f(x0) + ⟨∇f(x0), x − x0⟩ − L

2
∥x − x0∥2,

ϕ2(x) = f(x0) + ⟨∇f(x0), x − x0⟩ + L

2
∥x − x0∥2.

ϕ1(x) ≤ f(x) ≤ ϕ2(x) ∀x ∈ Rn.

∇ϕ2(x) = 0
∇f(x0) + L(x∗ − x0) = 0

x∗ = x0 − 1
L

∇f(x0)

xk+1 = xk − 1
L

∇f(xk)

https://fmin.xyz/

x

f(x)

!1(")

f(x)

xk xk+1

!2(")

This way leads to the stepsize choosing. However, often the constant is not

known.

But if the function is twice continuously differentiable and its gradient has Lipschitz

constant , we can derive a way to estimate this constant :

or

Stepsize choosing strategy significantly affects convergence. General Line search

algorithms might help in choosing scalar parameter.

For :

1
L L

L ∀x ∈ Rn

∥∇2f(x)∥ ≤ L

−LIn ⪯ ∇2f(x) ⪯ LIn

Stepsize choosing strategies
ηk

Constant stepsize
f ∈ C

1,1
L

ηk = η

https://fmin.xyz/docs/methods/line_search/line_search/

With choosing , we have:

The latter 2 strategies are the simplest in terms of implementation and analytical

analysis. It is clear that this approach does not often work very well in practice (the

function geometry is not known in advance).

More theoretical than practical approach. It also allows you to analyze the convergence,

but often exact line search can be difficult if the function calculation takes too long or

costs a lot.

Interesting theoretical property of this method is that each following iteration is

orthogonal to the previous one:

Optimality conditions:

f(xk) − f(xk+1) ≥ η (1 − 1
2

Lη)∥∇f(xk)∥2

η = 1
L

f(xk) − f(xk+1) ≥ 1
2L

∥∇f(xk)∥2

Fixed sequence

ηk = 1
√k + 1

Exact line search aka steepest descent

ηk = arg min
η∈R+

f(xk+1) = arg min
η∈R+

f(xk − η∇f(xk))

ηk = arg min
η∈R+

f(xk − η∇f(xk))

∇f(xk+1)⊤∇f(xk) = 0

Goldstein-Armijo

Convergence analysis

Assume that is convex and differentiable, and additionally

i.e. , is Lipschitz continuous with constant .

Since Lipschitz with constant , which means , we have :

Now we’ll consider second order Taylor approximation of and Taylor’s Remainder

Theorem (we assum, that the function is continuously differentiable), we have

For the gradient descent we have :

Now, if we’ll consider constant stepsize strategy and will maximize

, we’ll get .

That’s why we have:

Convex case

Lipischitz continuity of the gradient

f : Rn → R
∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ ∀x, y ∈ Rn

∇f L > 0

∇f L ∇2f ⪯ LI ∀x, y, z

(x − y)⊤(∇2f(z) − LI)(x − y) ≤ 0

(x − y)⊤∇2f(z)(x − y) ≤ L∥x − y∥2

f(y)
f

∀x, y, ∃z ∈ [x, y] :

f(y) = f(x) + ∇f(x)⊤(y − x) + 1
2

(x − y)⊤∇2f(z)(x − y)

≤ f(x) + ∇f(x)⊤(y − x) + L

2
∥x − y∥2

x = xk, y = xk+1, xk+1 = xk − ηk∇f(xk)

f(xk+1) ≤ f(xk) + ∇f(xk)⊤(−ηk∇f(xk)) + L

2
(ηk∇f(xk))2

≤ f(xk) − (1 − Lη

2
)η∥∇f(xk)∥2

Optimal constant stepsize

(1 − Lη

2
)η → max

η
η = 1

L

f(xk+1) ≤ f(xk) − 1
2L

∥∇f(xk)∥2

Convexity

f(xk) ≤ f(x∗) + ∇f(xk)⊤(xk − x∗)

Thus, summing over all iterations, we have:

where . And due to convexity:

If the function is strongly convex:

…

Conditions
Type of

convergence

Convex

Lipschitz-

continuous

function()

Sublinear

Convex

f(xk+1) ≤ f(x∗) + ∇f(xk)⊤(xk − x∗) − 1
2L

∥∇f(xk)∥2

= f(x∗) + L

2
(∥xk − x∗∥2 − ∥xk − x∗ − 1

L
∇f(xk)∥2)

= f(x∗) + L

2
(∥xk − x∗∥2 − ∥xk+1 − x∗∥2)

k∑
i=1

(f(xi) − f(x∗)) ≤ L

2
(∥x0 − x∗∥2 − ∥xk − x∗∥2)

≤ L

2
∥x0 − x∗∥2 = LR2

2
,

R = ∥x0 − x∗∥

f(xk) − f(x∗) ≤ 1
k

k∑
i=1

(f(xi) − f(x∗)) ≤ LR2

2k
= R2

2ηk

Strongly convex case

f(y) ≥ f(x) + ∇f(x)⊤(y − x) + µ

2
∥y − x∥2 ∀x, y ∈ Rn

∥xk+1 − x∗∥2 ≤ (1 − ηµ)∥xk − x∗∥2

Bounds

∥f(xk) − f(x∗)∥ ≤ ∥xk − x∗∥ ≤

G

O (1
k

) GR
k

Lipschitz-

continuous gradient

()

Sublinear

-Strongly convex

Lipschitz-

continuous

gradient()

 Linear

-Strongly convex

Lipschitz-

continuous hessian(

)

Locally linear

 - initial distance

The zen of gradient descent. Moritz Hardt

Great visualization

Cheatsheet on the different convergence theorems proofs

L

O (1
k

) LR2

k

µ

L

(1 − ηµ)kR2

µ

M

R < R
–

RR

R − R
(1 −

2µ

L + 3µ
)––

• R = ∥x0 − x∗∥
• R = 2µ

M

–

Materials
•

•

•

http://blog.mrtz.org/2013/09/07/the-zen-of-gradient-descent.html
http://fa.bianp.net/teaching/2018/eecs227at/gradient_descent.html
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

Methods / Adaptive metric methods / Newton method

Consider the function . Let there be equation . Consider a

linear approximation of the function near the solution ():

We get an approximate equation:

We can assume that the solution to equation will be close to the

optimal .

We get an iterative scheme:

This reasoning can be applied to the unconditional minimization task of the

function by writing down the necessary extremum condition:

Intuition

Newton’s method to find the equation’ roots
φ(x) : R → R φ(x∗) = 0

φ(x) x∗ − x = ∆x

φ(x∗) = φ(x + ∆x) ≈ φ(x) + φ′(x)∆x.

φ(x) + φ′(x)∆x = 0

∆x = −
φ(x)
φ′(x)

∆x∗ = x∗ − x

xk+1 = xk −
φ(xk)
φ′(xk)

.

f(x)

f ′(x∗) = 0

https://fmin.xyz/
https://fmin.xyz/docs/methods/Methods/
https://fmin.xyz/docs/methods/adaptive_metrics/adaptive_metric/

Here . Thus, we get the Newton optimization method in

its classic form:

With the only clarification that in the multidimensional case:

.

Let us now give us the function and a certain point . Let us consider the square

approximation of this function near :

The idea of the method is to find the point , that minimizes the function , i.e.

.

x

f(x)
! "#

f(x)

xk xk+1 xk+2

! "#+1

φ(x) = f ′(x), φ′(x) = f ′′(x)

xk+1 = xk − [f ′′(xk)]−1
f ′(xk). (Newton)

x ∈ Rn, f ′(x) = ∇f(x) ∈ Rn, f ′′(x) = ∇2f(x) ∈ Rn×n

Second order Taylor approximation of the function
f(x) xk

xk

~
f(x) = f(xk) + ⟨f ′(xk), x − xk⟩ + 1

2
⟨f ′′(xk)(x − xk), x − xk⟩.

xk+1
~
f(x)

∇ ~
f(xk+1) = 0

∇ ~
f(xk+1) = f ′(xk) + f ′′(xk)(xk+1 − xk) = 0

f ′′(xk)(xk+1 − xk) = −f ′(xk)

[f ′′(xk)]−1
f ′′(xk)(xk+1 − xk) = −[f ′′(xk)]−1

f ′(xk)

xk+1 = xk − [f ′′(xk)]−1
f ′(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-

degeneracy (for the method to exist), as well as its positive definiteness (for the

convergence guarantee).

Quadratic approximation and Newton step (in green) for varying starting points (in red).

Note that when the starting point is far from the global minimizer (in 0), the Newton

step totally overshoots the global minimizer. Picture was taken from the post.

Convergence

https://francisbach.com/self-concordant-analysis-newton/

Let’s try to get an estimate of how quickly the classical Newton method converges. We

will try to enter the necessary data and constants as needed in the conclusion (to

illustrate the methodology of obtaining such estimates).

Used here is: . Let’s try to estimate the

size of :

xk+1 − x∗ = xk − [f ′′(xk)]−1
f ′(xk) − x∗ = xk − x∗ − [f ′′(xk)]−1

f ′(xk) =

= xk − x∗ − [f ′′(xk)]−1 ∫ 1

0
f ′′(x∗ + τ(xk − x∗))(xk − x∗)dτ =

= (1 − [f ′′(xk)]−1 ∫ 1

0
f ′′(x∗ + τ(xk − x∗))dτ)(xk − x∗) =

= [f ′′(xk)]−1 (f ′′(xk) − ∫ 1

0
f ′′(x∗ + τ(xk − x∗))dτ)(xk − x∗) =

= [f ′′(xk)]−1 (∫ 1

0
(f ′′(xk) − f ′′(x∗ + τ(xk − x∗))dτ))(xk − x∗) =

= [f ′′(xk)]−1
Gk(xk − x∗)

Gk = ∫ 1
0 (f ′′(xk) − f ′′(x∗ + τ(xk − x∗))dτ)

Gk ∥ ∥∥ ∥∥ ∥

where .

So, we have:

Already smells like quadratic convergence. All that remains is to estimate the value of

Hessian’s reverse.

Because of Hessian’s Lipschitz continuity and symmetry:

So, (here we should already limit the necessity of being for such

estimations, i.e.).

The convergence condition imposes additional conditions on

Thus, we have an important result: Newton’s method for the function with Lipschitz

positive Hessian converges quadratically near () to the solution.

Let be a strongly convex twice continuously differentiated function at , for the

second derivative of which inequalities are executed: . Then

∥Gk∥ = ∫ 1

0
(f ′′(xk) − f ′′(x∗ + τ(xk − x∗))dτ) ≤

≤ ∫ 1

0
f ′′(xk) − f ′′(x∗ + τ(xk − x∗)) dτ ≤ (Hessian's Lipschitz continuity)

≤ ∫ 1

0
M∥xk − x∗ − τ(xk − x∗)∥dτ = ∫ 1

0
M∥xk − x∗∥(1 − τ)dτ = rk

2
M,∥ ∥∥ ∥rk = ∥xk − x∗∥

rk+1 ≤ [f ′′(xk)]−1 ⋅
rk

2
M ⋅ rk∥ ∥f ′′(xk) − f ′′(x∗) ⪰ −MrkIn

f ′′(xk) ⪰ f ′′(x∗) − MrkIn

f ′′(xk) ⪰ µIn − MrkIn

f ′′(xk) ⪰ (µ − Mrk)In

f ′′(xk) ≻ 0
rk < µ

M

[f ′′(xk)]−1 ≤ (µ − Mrk)−1∥ ∥rk+1 ≤
r2

kM

2(µ − Mrk)

rk+1 < rk

rk : rk < 2µ

3M

∥x0 − x∗∥ < 2µ

3M

Theorem
f(x) Rn

µIn ⪯ f ′′(x) ⪯ LIn

Newton’s method with a constant step locally converges to solving the problem with

superlinear speed. If, in addition, Hessian is Lipschitz continuous, then this method

converges locally to at a quadratic rate.

It’s nice:

quadratic convergence near the solution

affinity invariance

the parameters have little effect on the convergence rate

It’s not nice:

it is necessary to store the hessian on each iteration: memory

it is necessary to solve linear systems: operations

the Hessian can be degenerate at

the hessian may not be positively determined direction may

not be a descending direction

Newton’s damped method (adaptive stepsize)

Quasi-Newton methods (we don’t calculate the Hessian, we build its estimate -

BFGS)

Quadratic evaluation of the function by the first order oracle (superlinear

convergence)

The combination of the Newton method and the gradient descent (interesting

direction)

Higher order methods (most likely useless)

Going beyond least-squares – I : self-concordant analysis of Newton method

Going beyond least-squares – II : Self-concordant analysis for logistic regression

∥ ∥∥ ∥∥ ∥∥ ∥x∗

Summary

• x∗

•

•

• O(n2)
• O(n3)
• x∗

• → −(f ′′(x))−1f ′(x)

Possible directions
•

•

•

•

•

Materials
•

•

https://francisbach.com/self-concordant-analysis-newton/
https://francisbach.com/self-concordant-analysis-for-logistic-regression/

Picture with gradient and Newton field was taken from this tweet by Keenan Crane.

About global damped Newton convergence issue. Open in ColabOpen in Colab

Open in ColabOpen in Colab

∥ ∥∥ ∥
•

•

Code

https://twitter.com/keenanisalive/status/1421783338143129603
https://colab.research.google.com/drive/1-LmO57VfJ1-AYMopMPYbkFvKBF7YNhW2?usp=sharing
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Newton.ipynb

Methods / Adaptive metric methods / Quasi Newton methods

For the classic task of unconditional optimization the general scheme of

iteration method is written as:

In the Newton method, the direction (Newton’s direction) is set by the linear system

solution at each step:

i.e. at each iteration it is necessary to compensate hessian and gradient and resolve

linear system.

Note here that if we take a single matrix of as at each step, we will exactly

get the gradient descent method.

The general scheme of quasi-Newton methods is based on the selection of the

matrix so that it tends in some sense at to the true value of inverted Hessian in

the local optimum . Let’s consider several schemes using iterative updating of

 matrix in the following way:

Then if we use Taylor’s approximation for the first order gradient, we get it:

Now let’s formulate our method as:

in case you set the task of finding an update :

The simplest option is when the amendment has a rank equal to one. Then you

Intuition
f(x) → min

x∈Rn

xk+1 = xk + αksk

sk

sk = −Bk∇f(xk), Bk = f −1
xx (xk)

Bk = In Bk

Bk

k → ∞
f −1

xx (x∗)
Bk

Bk+1 = Bk + ∆Bk

∇f(xk) − ∇f(xk+1) ≈ fxx(xk+1)(xk − xk+1).

∆xk = Bk+1∆yk, where ∆yk = ∇f(xk+1) − ∇f(xk)

∆Bk

∆Bk∆yk = ∆xk − Bk∆yk

Broyden method
∆Bk

https://fmin.xyz/docs/methods/Methods/
https://fmin.xyz/docs/methods/adaptive_metrics/adaptive_metric/

can look for an amendment in the form

where is a scalar and is a non-zero vector. Then mark the right side of the

equation to find for :

We get it:

A possible solution is: , .

Then an iterative amendment to Hessian’s evaluation at each iteration:

∆Bk = µkqkq⊤
k .

µk qk

∆Bk ∆zk

∆zk = ∆xk − Bk∆yk

µkqkq⊤
k ∆yk = ∆zk

(µk ⋅ q⊤
k ∆yk)qk = ∆zk

qk = ∆zk µk = (q⊤
k ∆yk)−1

∆Bk =
(∆xk − Bk∆yk)(∆xk − Bk∆yk)⊤

⟨∆xk − Bk∆yk, ∆yk⟩
.

Davidon–Fletcher–Powell method
∆Bk = µ1∆xk(∆xk)⊤ + µ2Bk∆yk(Bk∆yk)⊤.

∆Bk =
(∆xk)(∆xk)⊤

⟨∆xk, ∆yk⟩
−

(Bk∆yk)(Bk∆yk)⊤

⟨Bk∆yk, ∆yk⟩
.

Broyden–Fletcher–Goldfarb–Shanno
method

∆Bk = QUQ⊤, Q = [q1, q2], q1, q2 ∈ Rn, U = ().
a c

c b

∆Bk =
(∆xk)(∆xk)⊤

⟨∆xk, ∆yk⟩
−

(Bk∆yk)(Bk∆yk)⊤

⟨Bk∆yk, ∆yk⟩
+ pkp⊤

k .

https://fmin.xyz/

Open in ColabOpen in Colab

Comparison of quasi Newton methods

Code
•

•

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb

